
NASA Technical Memorandum 104594, Vol. 4

MODIS Technical Report Series

Volume 4, MODIS Data Access
User’s Guide - Scan Cube Format

Virginia L. Kalb
Goddard Space Flight Center
Greenbelt, Maryland

Thomas E. Goff
Research and Data Systems Corporation
Greenbelt, Maryland

National Aeronautics and
Space Administration

Scientific and Technical
Information Program

1994

This publication is available from the NASA Center for AeroSpace Information,
800 Elkridge Landing Road, Linthicum Heights, MD 21090-2934, (301) 621-0390.

Table of Contents

INTRODUCTION

BACKGROUND

IDENTIFICATION

SCOPE

PURPOSE AND OBJECTIVES

DOCUMENTATION CONVENTIONS

TOOLKIT USAGE

QUICK EXAMPLE

TECHNICAL POINTS

FUNCTIONAL OVERVIEW

PSEUDO CODE EXAMPLE

FUNCTION CALL SEQUENCE

ADVANCED EXAMPLE

FUNCTION REFERENCES

LIBRARY ACCESS AND INSTALLATION

APPENDICES

Appendix A - MODIS Spatial Domain Descriptions

The MODIS Scan Cube Spatial Domain

The MODIS Rectilinear Domain

The MODIS Mapped Domain

Appendix B - Data Product header include file description

Appendix C - The DataDescriptors.h Library Include File Description

Appendix D - Data Product Header example

Appendix E - MODIS Dataset Internal Format

DATASET contents example

Appendix F - Library Dataset Interactions

GLOSSARY

REFERENCES

1

1

2

3

3

5

6

7

8

11

11

12

14

17

30

31

31

31

33

33

35

37

39

45

48

50

52

58

...
Ill

List of Figures

Figure 1

Figure 2

Figure 3

Figure 4

Figure 5

Figure 6

Figure 7

Figure 8

Figure 9

Figure 10

Figure 11

Figure 12

Simple Algorithm Example

Simple Algorithm make File

Detector Numbering

Pseudo Code for a Minimum Algorithm

Multiple Scan Cube Processing Illustration

Two Dimensional Access Example

MODIS Level-1 Simplified Scan Cube

Overall Dataset Contents

Memory Allocation for Variable Coincident Spatial Sizes

Dataset Contents Example

Data Flow Illustration

Algorithm Dataset Interactions

List of Tables

Table 1 Documentation Conventions

Table 2 List of Files

Table 3 MODIS Level-1 B Data Product Scan Cube Sizes

Table 4 Header Parameter Names

7

8

10

11

14

16

31

45

46

48

50

51

5

30

32

47

INTRODUCTION

The library functions described in this document allow read and write access to the Earth Observing System
(EOS) Moderate Resolution Spectroradiometer (MODIS) derived data products. They also provide access
to remotely sensed data from other scanning instruments, both heritage and new instruments, that have
been transformed into the MODIS scan cube format. These functions have been designed to allow all users
to have easy access to all information components contained in MODIS formatted datasets. They also
provide a flexible and simple method for writing MODIS formatted datasets.

The MODIS scanning technique is unique when compared with other instruments, due to its large off nadir
viewing angle coupled with the simultaneous capture of multiple Iines. Nevertheless, MODIS instrument
data will be available as both raw detector counts and at-satellite radiances in the instrument viewing
geometry. This includes all aberrations inherent in the MODIS scanning technique. Previous instruments
with similar types of instrument viewing distortions have been resampled before general consumption and
subsequent ingestion by science algorithms. However, highest algorithmic accuracy for science data
products is maintained by using this unresampled MODIS data.

The high MODIS data volume (approaching a half terabyte per day) has been a driving factor in the library
design. To avoid recopying data for user access, all I/O is performed through dynamic “C” pointer
manipulation. The user has easy access to any instrument band or data product parameter in a dataset
through the “C” data structure syntax. This technique is also used for creating output data products.

BACKGROUND

MODIS instrument data is used by a wide array of scientists to derive information about the Earth. In
general, scientists ingest MODIS data along with ancillary data to produce MODIS Data Products. These
products are then used as part of the knowledge base of information to determine long term changes in the
Earth biosphere, which is then used to make policy decisions at all governmental levels. MODIS algorithms

are executed in, and the resulting data products are archived by, the production EOS core system (ECS)
distributed information system (EOSDIS) which also archives the resulting data products.

Data derived from the MODIS instrument can be divided into three types, corresponding to three spatial
domains: the scan cube domain, an orbital rectilinear domain, and a geographically based mapped domain.
The scan cube domain consists of all Data Products that are produced at MODIS instrument pixel IFOVS,
or spatial aggregations thereof. (See Figure7 in Appendix A for a visualization of the MODIS scan cube.)
These products are the MODIS Level-lA raw counts, MODIS Level-1A Geolocation Data Product,
MODIS Level- lB at-satellite radiances, and Level-2 products that are produced in the true MODIS scan
geometry. The rectilinear domain consists of MODIS scan cube data that has been resampled into a
coordinate system on EOS across track and along track axes. The mapped domain encompasses all data
products that have been gridded, binned, or otherwise aggregated onto a map projection or other Earth
geoid based coordinate system such as the MODIS Level-3 data products.

1

Algorithm developers must consider the spatial domain in which the algorithm will operate. Algorithms that
do not incorporate a spatial component will operate in the scan cube domain. Algorithms that incorporate
spatial components or will use MISR Level - lb2 or similar data for Level-2 scan cube processing should
consider processing in the rectilinear or mapped domains. Algorithms that depend on more accurate band
to band registration or uniform ground field of views should also consider the rectilinear and/or mapped
domains. Algorithms that depend on in situ, external ancillary inputs, other satellite or instrument data
sources, or require fixed ground areas will require interactions with data in the mapped domain. Algorithm
developers must be cognizant of the MODIS “bow tie” overlap effect in the scan cube domain. See the
various MODIS publications listed in the reference section of this document for” bow tie” effect
descriptions. In all cases, the user needs to consider the possibility of modifying the algorithm to use the
“earlier” domains when possible. Transforming data products directly from the scan cube domain to the

mapped domain, without going through an intermediate rectilinear resampling, is highly recommended.
This will minimize data resarnpling, cross product data dependencies, and computer based processing
power. It should be noted that the historical Landsat TM data and the EOS MISR data are ~sampled from
the instrument geometry to scenes or orbital axes before any science algorithms are applied.

More complete descriptions of the MODIS spatial domains are given in Appendix A to this document.
Considerations for each domain, and transformations among domains are given in the “MODIS Processing
Spatial Domains” paper (see Reference section).

IDENTIFICATION

This document is the first in a series of User’s Guides describing the library and utility functions that the
SDST will be generating. This edition of the MODIS SDST Library USER’S GUIDE applies to the
September 1994 delivery of the MODIS scan cube I/O access routines, version 1.0, library source code. It
includes descriptions of all the pieces necessary to use the library, including sample data product header
include files for AVHRR. Additional data product header include files for actual MODIS products and
other data source header include files will be available via electronic means and are not a part of this edition
of the guide.

Several small test datasets derived from AVHRR are included in the distribution and used for illustration
purposes in this document. More complete datasets are available from the MODIS SDST or can be created
using information in the appendices to this document.

This document is written and maintained by members of the MODIS Science Data and Support Team
under the auspices of NASA Goddard Space Flight Center, code 920.2, in Greenbelt, MD.

2

SCOPE

This guide contains information applicable to both the use and maintenance of the library functions. It is
directed toward four classes of users: normal MODIS algorithm creators and data users, sophisticated
c~ators of spatially derived algorithms, those who will provide additional instrument datasets (other than
MODIS), and those who will alter existing or add new data product header include files. This document
does not describe the internal workings of the library source code, but provides descriptions of the methods
utilized by the library to access the datasets to aid users in understanding the library’s capabilities.

This edition of the MODIS SDST Library User’s Guide describes the initial “C” language version of the
SDST Library input and output (1/0) functions. These were created for the purpose of reading and writing
currently available data formatted as MODIS data products. A future release of this document will include
similar FORTRAN functions written in either FORTRAN77 or FORTRAN90. The current suite of
functions at this release is limited to the MODIS Level-lA, Level- lB, and Level-2 Data Products. These
are the data products that are a part of the scan cube domain. It does not cover access to Level-3 or
Level-4 data products which are in the mapped domain.

Use of this library relies heavily on the user’s understanding of how to use each “C” data structure as
defined uniquely for each format Data Product. These are defined in data product header include files
which are unique to each formal Data Product. These header include files, available to all users of this
library, will be under SDST configuration management and distribution. They will be published and
announced via Em ail to all MODIS algorithm developers. This will help to insure the synchronization of
data product definitions among the MODIS Team Member responsible for the formal Data Product, the
Science Product Support Office (SPSO) database entries, the data product header include files associated
with this library, and all users of the data products.

The MODIS SDST proposes to write these data product header include files for algorithm developers in
conjunction with the SPSO and MODIS Team Members or their programming representatives. Although
the access to MODIS data is easily understood, the programming techniques utilized in the header include
files are necessarily complex to accomplish the encapsulation of the data products. Documentation of these
techniques is given for completeness but is not mandatory reading for library use.

PURPOSE AND OBJECTIVES

This library has been designed to allow read and write access to data from a suite of scanning type
instruments whose data have been transformed into a MODIS viewing geometry and written in a MODIS
scan cube data structure. This allows a common library to be used for algorithm development. Simulated
andlor test data sets will be used for algorithm development and production environment testing before
actual MODIS data are available. The currently available datasets emphasize AVHRR data, with TM data
forthcoming, but are expected to be expanded to other instruments such as MSS, CZCS, MAS, or other
data sources on a user requested basis. The internal format for the dataset contents and a simple example
are given in Appendix E to this document.

3

The MODIS scan cube concept contains data values in a three dimensional ragged array format where the
array dimensions correspond to the across track direction, the along track dimension, and the number of
bands. The ragged array terminology applies to a data structure in which the sizes of each component of
the array are not constant. For example, a two dimensional ragged array data structure containing the
words of a sentence would use the number of words in the sentence as one dimension and the variable
number of characters per word in the other dimension. In the MODIS case, the number of bands is
constant, but the number of lines per scan cube in the along track dimension is a function of the band
number, and the number of pixels across track varies across scan cubes.

The three dimensional scan cube array can be collapsed into a two dimensional data array consisting of
across track pixels and bands by setting the along track dimension to one (1). This allows single line
scanning instruments to be accommodated by the MODIS scan cube data structure. The number of
elements in each dimension are included in the library structures and are explicitly available (no function
call required) to the user. This allows the use of these library functions for uses beyond the scope of the
MODIS effort.

The library implementation, which incorporates a “data product header include file” technique, allows user
written algorithms to determine the sizes of all data array elements as a function of the instrument data
source. This allows a single algorithm process (program) to be easily written in a manner such that any
instrument source can be ingested. Information such as the number of bands, band central wavelengths,
band widths, number of pixels, etc. can be made available from each data product header include file.
Multiple data product header include files can be used within a single program, thereby allowing
simultaneous access to other data products. An example of this facility comes from AVHRR in which the
data has a different number of across track pixels and bands from MODIS; and from TM in which a
different instrument IFOV for each band is employed. AVHRR data are currently made available to
algorithm developers in raw instrument counts, the original NOAA albedo/ brightness temperature data
values, and also converted to radiance energy values. Actual MODIS data will be available only in radiance
energy values. Utilizing the library header include files, which contain data type and structure specifications
for each of the available input and output data source, allows the data types to be known to an application
program without performing data type conversion within the library. Additional data types can be
accommodated with a custom header file describing the new data source. The library does not need to be
recompiled to add new data sources.

The function calling sequences and parameters are expected to remain constant even though the underlying
implementation may change. This ensures a stable interface for algorithm developers.

The remainder of this document addresses the I/O routines and illustrates, by example, how to access the
data in the MODIS scan cube. Each section of this library contains functions that allow a science algorithm
to input and output MODIS data products, or other instrument data masquerading as MODIS scan cubes.
Library functions that transform or resample data products from MODIS scan cubes to other forms have
yet to be defined, and are not a part of this library effort.

DOCUMENTATION CONVENTIONS

The conventions used in this document are described as follows:

Table 1. Conventions Used

Times Roman font Normal text and narrative comments added to source listings.

Courier font Program source code source listings copied from the library distribution and
pseudo code examples

Arial Program output as if received at a terminal

carets (e and >) Enclose generic items to be replaced by specific user supplied names or
descriptions. This convention is also used in UNIX source listings to specify
the default location for operating system library include files.

double quotes (“) Enclose a character string set that is to be considered as a unit.

Leading Caps Are used to designate a formal noun, as in a reference to a formal registered
(with the SPSO) Data Product.

UNIX meta-characters A method of designating occurrences of characters using the UNIX
conventions for metacharacters, speciilca.lly the * character to represent one
or more occurrences of a character.

5

TOOLKIT USAGE

Four methods for illustrating the use of the library functions, and a section with technical information, are
included in this section. The __ presents an actual small algorithm with thee parameters. The
source code is included in the library distribution and can be quickly cloned to generate simple algorithms
which can be expanded with time. This is the easiest method for getting started with the library function
calls. The J?unctiod ~ section goes into the philosophical aspects in the design and use of the I/O
library. It includes descriptions of the functions and describes the sequence and coupling among the
functions. The Advanc~ Ex@ section presents a sample algorithm that exercises the library’s
capabilities for handling multiple scan cubes at a time with the use of moving windows. This allows two
dimensional access across the boundaries of these scan cubes. This example illustrates the library’s use with
algorithms which need to know the relative locations of neighboring pixels for spatial operations. The final

~ kf&xt&Q section fists the functions ~ alphabetical order by function entry point names and
included the details about each function call, such as error returns and ANSI function prototype definitions.
The included Technical Points section presents a list of assumptions and notes concerning the use of these
I/O library functions.

6

QUICK EXAMPLE

To illustrate the simplicity of library usage, a fully functional actual code example with make file is included
in this section. It reads MODIS Level- lB radiances (actually AVHRR in MODIS form) and calculates a
simple vegetation index (VI) with an average thermal temperature and a quality assurance (QA) value as
additional parameters. Only those lines of source code directly applicable to a potential science algorithm
are commented.

#include <stdio. h>
#include <string. h>
#include “AVHRR.h“ <- define AVHRR data in MODIS format

#include “~. h” <- ckfine pseudo VI output data product
#include “MOD_IOJrototypes. h“

main ()
{

AVHRRscancube ibuf; <- declale an input data Structtue

VIscancube obuf; <- &clam an output data Structule
short fdin, fdout, ierr, k;
f lost pixchl, pixCh2, pixCh4, pixCh5;
long bufid;
long npixels, nx, ny, x, y;

f di.n=MOD_IO_openMast erInputDataset (“AVHRR_Orblt543. Llb. MODISlike”,
&AVHRRheader) ;

f clout = MOD_IO_openOutputDataSet (“VIOutPWf ile”, &V1header) ;
while ((buf id = MOD_IO_readSwath (fdin, &lbuf)) ~ 0) { <- tiput tie data

ierr = MOD_IO_allocateOutputBuf fer(fdout, &obuf) ; <- obtain an output buffer

npixels = ibuf. b[O] .nPixels; <- howmanypixels topmcess

for (k=O; k<npixels; k++) { (Note that we know apriori that each band of AVHRR
has the same molution, hence the same numlxxof pixels.)

pixChl = ibuf. b[O]. data[k]; <- getvalueforbandl

pixCh2 = ibuf. b[l]. data[k]; <- band2, etc..., finrnabandwithinthe

pixCh4 = ibuf. b[3]. data[kl; <- input data btier.bncontaining

pixCh5 = ibuf. b[4]. data[k]; <- adataarray.data(l

obuf. vegIndex. data[kl = (pixCh2 - pixChl)/(PixCh2 + plxchl);<-c~c~te~~
obuf. visuality. data[k] = O;
if(obuf .vegIndex. data [k] < l. O)obuf. visuality. data[k] = -l. O;<-detetmine QA
if (obuf. vegIndex. data [k] > l. O)obuf. visuality. data [k] = +1.0;

obuf. avgTemp. data[k] = (pb$h4 + plxCh5)/2. O; <- fmdtheavemge tempemture

}
ierr . MOD_IO_writeSwath (fdout) ; <- Writetheoutputbuffer

}
IW3D_IO_closeDatasets () ;

}

Figurel. Simple algorithm example.

7

The three VI parameters (vegIndex, viQual ity, and avgTemp) are treated as subelements of a
complex data structure. Each element of this structure corresponds to one instance of a complex data
product value. Use of the “C” data structure concept instead of separate arrays guarantees the
synchronization of the various science parameters.

The above example can be compiled with the MODIS I/O Utility Library via the following UNIX make ffle
listed in Figure 2. This is a minimalist make file and does not include directory details and environmental
variables. See the make fdes, README fde and INSTALL file in the library distribution for details. (Note
that the “-Aa” option flag is the ANSI switch on HP and SGI, not Sun compilers.)

VI: vi. o ~D_IO_llb. o
cc -Aa -o VI vi. o MOD_IO_lib. o

vi .o: vi. c MOD_IO_lib. h AVHRR.h VI .h DataDescriptor. h
cc -Aa -c vi. c MOD_IO_lib. h DataDescriptor. h AVHRR.h VI .h

MOD_IO_lib. o: MOD_IO_lib. c MOD_IO_lib. h DataDescriptor. h
cc –Aa -c MOD_IO_lib. c

Figure 2. Simple example make file.

The simplicity of this source code is made possible by the predefmed data product header include file. The
header file for the example VI data product that defined the output data product and the parameters of this
output data product is included in the library distribution. The explanation of the contents of this header
include file is the subject of a Appendix D to this document.

TECHNICAL POINTS

● This initial release includes “C” bindings only. Bindings for FORTRAN functions can not be
implemented due to the lack of data structures in FORTRAN77. Bindings for FORTRAN90, however,
are possible. Algorithms that are written in FORTRAN77 (with POSIX and ECS approved extensions)
will require the writing of “wrapper” functions that extract MODIS data for each band or parameter
individually and supply this data to a calling FORTRAN function. The SDST is considering adding this
capability and needs user input to generate a requirement.

● Each band or parameter in a scan cube in the data set can be accessed as either a linear array (vector) or

a two dimensional array (matrix). This is the user’s choice when writing the algorithm. Scan cube sizes
can vary from one scan cube to the next. The bands or parameters can have different array sizes that are
integer multiples of each other to accommodate multiple data resolutions.

● Output data product scan cubes are coupled to a master input scan cube. This allows the MODIS scan
cube Geolocation Data Product to be applied to an output product, by reference. That is: a new
geolocation data product does not need to be created for each output product, the input geolocation
applies to the output product as well. This coupling is maintained in all subsequent generations of
MODIS Data Products.

● Additional input data in the scan cube or rectilinear domain can be accessed as ancillary inputs by this
same set of library calls. No additional functions are needed, but care must be exercised in the scan cube
domain to maintain spatial registration. The onus is on the user, not this utility library, to insure proper
usage of ancillary data.

c All accesses to MODIS data are assumed to be sequential. Scan cube data can not be accessed in a
random manner with these library calls.

● Error returns are returned to the user as function returns. Negative numbers are an error, zero or

optional positive numbers indicate anon error condition. Negative error returns from -1 to -99 are non
fatal (soft) errors such as encountering an end of file (EOF) condition. Error returns from -100 to -???
indicate a fatal (hard) error such as a memory overflow or illegal dataset. This utility library will endeavor
use the generic PGS error determination routines in a future release, after they are more fully understood
by the developers of this library. NOTE that this current library release (1.0) produces error messages to
stderr and terminates if a fatal error occurs. This is a temporary safety mechanism for algorithm
development and will not be allowed in the PGS environment. Error return values and messages are
documented in the Alphabetized Function Reference section of this user’s guide.

● All functions use ANSI prototyping beginning with the 1.0 release. These prototypes are available in a
“C” header include file, “MOD_IO_prototypes. h”, included with the library distribution.

● A set of headers will be publicly available that define the Data Product data structures, file set
descriptions, constant variables (typedefs), etc. Any header include files for formal Data Product
structures generated by algorithm developers are required to be given back to the SDST Utility Library
configured management access point for availability to all library users. A example generic header is
described and included in Appendix B to this document.

. w function CWS dynamically allocate space within the library and set pointers to that data space in the

user’s data structure. This frees the science algorithm developer (the user of the library) from concerns
about memory allocation details and data array boundary overruns (memory leaks), provided the header
structures are used. Most importantly, it allows variable length scan cube records for both the science
and calibration portions of each MODIS scan. This ability applies to both the scan cube and rectilinear
domains.

● The scan cubes are assumed to be sequential in time. That is: no global descriptor such as a scan cube
counter or equivalent time based discriminator is implemented, but will be required to identify scan cubes
in the production environment. Opening more than one input dataset, (granule or orbit), is allowed.
Additional datasets that do not match the global dataset descriptor or master scan cube ID will product a
non fatal error in future releases. The user, not the library, is then responsible for mapping or “stitching”
techniques to insure geographical registration.

9

.- .—

●

More than one scan cube can be accessed (sequentially) for each opened dataset. The limit to the number
of input data sets concurrently open is three (3), with user access to five (5) scan cubes per dataset. This
access can be “round robin’ed’ within the five (5) at a time limit. Three (3) output data sets can also be
generated concurrently. These limits am parametrized in the library internal header fde and could be
easily changed by recompiling the library with different values. Note that larger numbers will increase the
library internal table sizes.

Users interested in the MODIS calibration and correlation with documentation supplied by Santa Barbara
Research Center (SBRC, the MODIS instrument builder) will need the information in this paragraph.
Science algorithm developers should not need this information but it is included here for reference
purposes. External documentation with the detector numbering scheme used by SBRC will require that
the user of MODIS Level-1A and Level-lB data know about the “flipping” of this detector numbering
with respect to the scan cube line numbering sequence. See Figure 3. The Utility Library uses a “line
within scan cube” numbering scheme that increases in the along track direction. This is opposite to the
SBRC detector numbering scheme. This line numbering scheme is used in the MODIS Level-lA,
Level-lB, and Level-2 Data Products.

across track ~

SBRC Detectors

Scanlineo

swath ~

acanline9

scan cube ~
c.-
E
0
c

U
across track ~

SDST Scan Lines

Figure 3. Detector numbering.

The input and output MODIS data calls can be intermixed within the same program, but must be kept in
the order illustrated in the included source code and pseudo code examples .-This sequencing facilitates
synchronization of the Geolocation Data Product with all output Data Products.

The library is designed to enforce function call ordering and will generate error conditions otherwise.

Fully commented sample programs that include the incorporation of heritage and/or dummy algorithms
are available in the library distribution or from members of the SDST algorithm transfer team (ATT)
directly. Additional help, information, and sample code is available from AIT members.

10

FUNCTIONAL OVERVIEW

This utility library can be used in a simple manner in which a MODIS Data Product is generated from only
the MODIS Radiance input values, or a more complicated manner in which concurrent use of multiple scan
cubes and more than one input source are used to generate a MODIS Data Product. The example pseudo
code, listed in Figure 4, introduces the simple techniques for accessing MODIS data. A discussion of more
complex capabilities of this library is contained is a later section of this user’s guide.

PSEUDO CODE EXAMPLE

The following pseudo code example contains an ordered list of the basic function calls required to develop
an algorithm. This sequence of calls performs the following functions. The MODIS scan cube domain input
Data Products are obtained with a sequence of input library calls, allocation of output scan cubes are
obtained via a library call, the algorithm results are placed into the new scan cubes, and Data Products are
transferred to the fde system with output library calls. The library is initialized with data set “file open”
calls, scan cubes are staged with a “read cube” call, individual MODIS bands or other data product
parameters are made available to the user within a “C” data structure, output scan cubes are allocated,
output data product parameters are calculated, the scan cube of data product is placed into the output file,
and finally the data sets are closed with a “file close” call. Multiple bands or parameters are accessible by
accessing elements of each input data structure, and multiple sequential scan cubes are obtained with
multiple “read cube” calls into separate input data address areas. Pseudo code with the library function
names for a minimum algorithm is shown in Figure 4.

f ilein = MOD_IO_openMasterInPutDataset (inputFil@J~e,
InDataDescriptorAddr)

f ileout = MOD_IO_openOutputDataset (outputFlleNanw,
OutDataDescriptorAddr)

for every scan cube:
MOD_IO_readSwath (f ilein, InBuf f erAddr)
MOD_IO_allocateOutputBuf f er (f ileout, OutBuf f erAddr)
npixels = InBuf f erAddr. bandl. nPixels - 1
con-put e the parameters for this algorithm, for k= O to npixels

OutBuf f er. paraml. data [k] = a function of (
InBuffer. bandl data [k] , etc.)

MOD_IO_vriteSwath (f ileout)
end of for evew scan cube
MOD_IO_closeDatasets ()

Figure 4. Pseudo code with the library function names for a minimum algorithm.

Note the use of the “C” data structure Out Bu f f er. paraml. dat a [k] in which each derived value of
an output Data Product is placed into an output buffer ‘Out Bu f f er’ , in a specified parameter
‘paraml 1, in a linear array ‘data [1 ‘. The size of the array ‘data [1 ‘, and the corresponding range
of the index ‘k‘, are dynamically iltered by the value of ‘npixe 1s’ for each read of a scan cube. This is
necessary to prevent the placing of values outside the memory bounds of the output data product.

11

—.

FUNCTION CALL SEQUENCE

The library functions must be invoked in the proper order as illustrated in Figure 4- Pseudo Code example
(previous section). The functions performed by the individual function calls, and their coupling with other
functions, are given in the following paragraphs.

The ‘ filein = MOD_IO_openMasterInputDataset (inputFileName,

InDat aDescript orAddr) ‘ function returns a unique identifier (‘ f i 1 ein’) to a dataset containing

the MODIS Level- 1A, MODIS Level- lB, MODIS Geolocation, or other MODIS Level-2 input Data
Products. It requires the user to specify a character amay ‘input Fi leName’ containing the fully qualifkd
name of the MODIS or “MODIS like” input data ffles. The library checks the input dataset for a predefine
dataset type specifier e.g. “MODIS_LIB”. The user supplied parameter ‘InDat aDes cript orAddr’ is

the address of an instance of a data structure defined in the unique product header include file for this input
product. The formal name of this data structure is given in that header include fde. The header include file
also contains a character array with a dataset contents specifier e.g., “AVHRR_albedo_a.nd_radimces”.
These characters are used as a sanity check with the dataset embedded header information to make sure the
user knows the source and type of data expected. For example, an AVHRR dataset can be used as input to
an algorithm for development purposes, but the user must know apriori (and specified in the AVHRR.h
include file) which AVHRR bands to use in the algorithm. These bands will have different central wave
numbers and band widths for other instrument data sources such as MAS or MSS. Additional information,
unique to each dataset, is available to the library through the dataset contents. The header include files
contain the generic dataset parameters and the specific formatting information for that dataset.

The ‘ fileout = MOD_IO_openOutPutDataset (oPutPutFileName,

OutDat aDescriPtorAddr) ‘ function returns a unique identifier (‘ f i leout ‘) to a dataset created
by the library to contain the user derived output Data Product. It requires the user to specify a character
array ‘out put F i 1 eName’ containing the fully qualified name of the MODIS or “MODIS like” output
data file. The library places the predefine dataset type specifier (“MODIS”) into the output data product
volume header. The user supplied parameter ‘Out Dat aDes cript orAddr’ k the address of a data

structure defined in the unique product header include file for this output product. The library also places a
character array with a dataset contents specifier e.g. “AVHRR-de~ved-Locust_ probability” into the output
file volume header. This is obtained from the data product formal “<product.h>” file. Geolocation that has
been tagged to the Master input scan cubes also applies to the output data product. The master input scan
cube dataset must be open before this cal can be made.

The ‘err = MOD_IO_readSwath (f ilein, InBufferAddr) ‘ function reads a scan cube’s

worth of data from the dataset specified by ‘ f i 1 e i n‘ into the library space, not the user space. The

address of the user data structure parameter ‘ InBuf f erAddr’ k passed to the library function. The

library passes pointers to the science data to the user through the user’s data structure ‘ InBu f f er’. In
addition, the library places the number of Earth viewing along track elements, the number of across track
elements per line, and the number of total spatial elements (across track times along track) into this user
supplied pointer to the scan cube data structure. For the real MODIS instrumen~ the nominal number of
across track spatial elements is 1354 with a freed 10 detectors along track, thereby creating 13540 spatial
elements. MODIS bands 1 through 7 will have larger numbers for these values. (Note that spatial elements
are not the same as IFOVS for MODIS bands 1 through 7). For the AVHRR MODIS “look alike”, these

12

returned numbers are 2048 pixels across, 10 detectors down, and 20480 total elements. Caution: this
returned value can be different for each MODIS scan cube because the number of pixels across a MODIS
scan is ground commendable. This can also vary across instrument data sources. The library handles data
sources with a different number of pixels in each of the two dimensions, and a different number of pixels
per band (or parameter), and can handle these within the same algorithm program.

Each input Data Product is represented as a data structure to the user. Pointers are used within the data
structure to allow access to each individual parameter. This technique allows the library to allocate memory
space dynamically when the size of the scan cube changes. This is performed without user intervention. It
also involves no memory transfers and is thus very efficient. The user has access to all the information and
data sizes required to use the input data via a set of predefine (in the data product header include file) data
structure elements. This is explained in the header ffle descriptions in a following section and also illustrated
in examples included in the appendix to this document. IMPORTANT: Users who plan to use a scan cube
call for spatial processing need to be knowledgeable of the detector numbering, band to/ from detector
translations, band registration over variable spatial IFOVS, and pixel line numbering schemes.

If the input file is a MODIS Level- 1A dataset, additional information as defined in the MODIS Level- 1A
Data Product header include file is available. This allows access to the onboard calibration data. Details on
how to access these components is contained in the Level-1A Data Product header include file and is not
included here.

The ‘err = MOD_IO_allocateOutputBuf fer (f ileout, OutBuf ferAddr) ‘ function
creates space in the library allocated memory area for an output scan cube that corresponds to the currently
specified “Master scan cube”. This synchronizes the output Data Product with the Master input data
Product, thereby allowing the appropriate geolocation dataset to apply to this output Data Product. The
output file is designated by the user supplied ‘ f i 1 eout’ indicator. All information that the algorithm
requires (across and along sizes, number of pixels, etc.) is now available as structure elements in the formal
output Data Product data structure pointed to by the user supplied address ‘Out Bu f f erAddr’. These
sizes must be used in the algorithm code to prevent ‘stepping over’ or overwriting the neighboring data
elements. Extreme cases will produce a memory protection fault. The function prints an error message if
something goes wrong.

The ‘MOD_IO_wri t eSwath (f i 1 eout) ‘ function writes the user generated data from the library

memory space onto the disk. The user parameter ‘ f i 1 eout’ indicates to the library which output dataset

is to be written. An error code is returned if unsuccessful.

The ‘MOD_IO_closeDatasets () ‘ call, the ‘MOD_IO_closeInPutDataset (f ilein) ‘
call, and the ‘MOD_IO_closeOutputDat a set (f i leout) ‘ call deallocate the library memory

space for either the specified input file, output file, or all dataset files. It also appends a trailer record to an
output dataset to indicate a logical end of file (EOF).

13

——

ADVANCED EXAMPLE

This section illustrates the use of the library for spatial processing by allowing more than one scan cube to
be in memory at a time and utilizes the two dimensional access to the scan cube data. This code example
performs a moving window spatial average over a 3 by 3 pixel mea across scan cube boundaries. This
requires the use of two input scan cube buffers for each output buffer. Figure 5 illustrates the spatial
relationship for the indices in the code example. The X in the figure corresponds to the placement of the
calculated average in the output data product.

+ j - direction ~

x- .
forhe nextto lastcolumn,

RADIUS,in thej - direction=2
x -

7
ibuf[bsav]

-x

x
forthelastcolumn,

RADIUS,in thej - dreotion= 1

ibuf[bufindex]

Figure 5. Multiple scan cube processing illustration.

The key to obtaining the data within the scan cube is the use of “C” data structures with dynamic pointers.
The example code in this section is graphically illustrated in Figure 5. The data structure contents, including
the pointers, is reinitialized on each invocation of a MOD_IO_readSwath or
MOD_IO_a 1 lo cat eOutput Buf f er function. The data structure is declared by the user, but its

address is passed to the library so that the library can manage dynamic memory allocation and fill the data
structure. The user gains access to the data indirectly through the pointer mechanism. Note that while the
data product header include file provides both one dimensional and two dimensional access to the same
scan cube data, a single algorithm can not access the same data utilizing both techniques at the same time.

#include <stdio. h>
#include <string. h>
#include “AVHRR.h“ <- the MODIS header include fdes
#include “MOD_IO~rototypes. h“
#define RADIUS 3
#define Min(x, y) (x < y ? x : y)

main ()
{

AVHRR2Dscancube ibuf [2] ; <-
AVHRR2Dscanctie obuf; <-
short f din, f clout, i err, hndindex;

decltue 2 input bui%ersof type AVHRR2Dscancube

and one output btier of the same type

Figure 6. Two dirrmsional access example.

14

long bufid[21;
short bufindex, bsav, j, i, kj, ki, radiusi, radiusj;
long noutput, nj, ni;
float output;

fdin=MOD_IO_openMasterInputDataset (“scancubes.s rMll”, &AVHRRheader);
fdout = MOD_IO_openOutputDataset (“avgoutputfile”l &A~eader);
if((bufid[O] = MOD_IO_readSwath(fdin, &lbUf[Ol)) < 0) exlt(-l);
bsav=O;
bufinde.x=l;
while((bufid[bufindexl = llOD_lO_readSwath(fdin, &ibuf[bufindexl)) > 0) {

“--Thiswhileloop isexecuteduntilthe readSwathfunction indicatesnomomdata meavailable.
fprintf (stderr,’’min: read i-d = %d\n”, bufid[bufi.ndexl);
ierr = MoD_IO_allocateOutputBuffer(fdout, &obuf) ;<- mquestanoutputbufferfrom

the library.
for(bandindex=O; bandindex~VHRIWeader.nbands; bandindex++) {

nj = ibuf[bufindex] .b[bandindex] .nAlongScan;<- thenumberofekmentsb
ni = ibuf[bufindex] .b[bandindex] .nAlongTrack;<- each chction.

radiusi = RADIUS; <- howfarin theidimtion toaverage.
for (j=O; j<nj; j++) {

/’ Adjust the radius for rightmxt columns, where a
smiler window is needed. */

radiusj = Min(RADIUS, nj-j); <- how farinthejdkctiontoaverage.
for (i=O; i<ni-2; i++) {

output = o; noutput = O;
for (kj=O; kj<radiusj; kj++) {

for (ki=O; ki<radiusi; ki++) {
output += ibuf[bsav] .b[bandindexl .data->~[j+kjl [i+kil;
noutput++;

} } “ sumupthepixelvduesha3x3pixel= ‘lledatastmctuxeusedhe~addm.sseseach
pixelbysclcctingthe buffer@xav]fmman armyofinputbuffers ib@bsav],indexed

bythebandnumber @andindex],ftulher indexedtothescience data.datawhichpoints
tothetwodimensionalamay mpmentationxy[][],usingnonnally computedamay

indimj+kjand i+ki.
obuf.b[bandindexl .data->xy[j 1 [i] = (output/noutput+.5);

} “ tiou@utptiuctkcontidtitiash@ebtierobti,mhgtisme&hs~c~~fique

astheinputbuffer.
/’ Next to last line in the current scancube: need the

top line from the next scancube: */
output = o; noutput = O;
for (kj=O; kj<radiusj; kj++) {

output += ibuf[bsav] .b[bandindex] .data->xy[j+kj] [ni-21; noutput++;
output += ibuf[bsav] .b[bandindex] .data–>v[j+kj] [ni–11 ; noutput++;
output += ibuf[bufindex] .b[bandindex] .data->~[j+kjl [01; noutput++;

} AA N~tiibtifimb~vtibtimkxti&ca~tiatWeRntwmcuh

areaccessedhe~.

Figure 6. Two dimensional access example (continued).

15

obuf. b[bandindex] .data->xy[j] [ni-2] = (output/noutput+ .5);
/’ Last line in the current scancube: need the top 2

lines from the next scancube: */
output = o; noutput = O;
for (kj=O; kj<radiusj; kj++) {

output += ibuf[bsav] .b[bandindex] .data->xy[j+kj] [ni-l]; noutput++;
output += ibuf[bufindex] .b[bandindex] .data->xy[j+kj] [0]; noutput++;
output += ibuf[bufindex] .b[bandind~] .data->~[j+kj] [1]; noutput++;

} AA timcuk~mkavmd~owmcuhtimbtimkx

obuf.b[bandindex] .data->xy[j] [ni–1] = (output/noutput+.5); <-.5isusedto

mundtointeger numbers properly.
}

}
bsav = bufindex;
bufindex ‘= 1; /’ we are using only 2 scan cubes so an exclusive

used to toggle the index */
ierr = MOD_IO_writeSwath(fdout) ;

}
MOD_IO_closeDatasets ();

Figure6. Twodimensional access example (continued).

Theaboveexample does notinclude the useofmorethan one ancillaryinputMODIS dataproduct,

or is

or
auxiliary data from non MODIS sources. Ancillary data, obtained from other datasources, can be accessed
viathese library calls and included in the algorithm code after conversion to MODIS scan cube format.
Auxiliary data is obtained via function calls thatare notapart ofthis library and can beinany data format.
The algorithm writer must insure that these extradatasources are used appropriately bychecking
geolocation information, spatial sizes, units, and etc. associated with these ancillary data. This information
is made available to the user via the dataset header contents and accessed via the data structure pointer
mechanism. MODIS output data products are kept in synchronization with the Master input data product
by this library. The auxiliary data function calls can provide correct data by examining the input parameters
that specify the area and units requested by the calling program.

16

FUNCTION REFERENCES

This section contains the alphabetical ordering of the function calls documented in this User’s Guide. It is
meant to be a quick reference to the individual function calls. Details of the ANSI prototyping
specifications are included.

All error messages produced by the librmy functions are documented here. As a debugging aid, almost all
errors are produced as a result of the one of the following conditions:

1- Improper sequencing of function calls.

2- Incompatible input data file and data product header include file (e.g., user included “AVHRR.h” but
is trying to read a TM dataset).

3- Bad data include fde; perhaps an existing <product>.h file was cloned and improperly altered for a
new data product.

Errors encountered by the current implementation of these functions will cause an immediate abort (with an
error message to the UNIX stderr). This behavior will be altered in a future release to use the ECS error
trapping and reporting functions as required in a production environment. The error messages documented
here will also be passed to the MODIS logon the MODIS team leader’s computer facility (TLCF). The
source code contains debug statements that can be ‘turned on’ at compile time for additional information.
These messages are not documented in this User’s Guide.

17

MOD_IO_allocateOutputBuffer

SYNOPSIS:

DESCRIPTION:

INPUTS:

OUTPUTS:

RETURN:

EXAMPLE:

COMMENTS:

ERROR
MESSAGES:

err = short MOD_IO_allocateOutputBuffer(short <output file designator>,
void * <returned buffer address>)

This function requests that the library obtain memory for an output data buffer from
the operating system. The space required is known from the internal data structure
associated with the user supplied <output fiie designato~ and the master scan cube.

short coutput file designato~ : The output fde designator returned by the
<MOD_IO_openOutputDataset function.

void * <returned buffer address> : The address of the user declared instance of the
scan cube data structure, into which the library places the updated pointers to the new
data.

err: The return status value;

Oif all went well; error message and program termination if not.

#include “MOD_IO_prototypes.h”

##include “AVHRR.h”

AVHRRscancube outputBuffer;

fileout = MOD_IO_openOutputDataset(...

if(MOD_IO_allocateOutputBuffer(fileout, &outputBuffer) != O)
printf(“allocate error: 9Ldk”, err);

When an output buffer is allocated by the library, it inherits the scan cube number of
frames from the corresponding “Master Input Scan Cube”.

“No output stream to write to!”
“allocateOutputBuffer: Invalid output stream id”
“Sorry, output buffer for id= <numbee has not been flushed” “can’t recover”
“Sorry, cannot match next output id with master input buffers”

“Output id =<id number>, input list= <available buffer ids>” “can’t recover”
“Sorrv.unable to allocate outtmt buffer for band <numbe~’’’’ctn’t recover”,, ,

18

-.

MOD_IO_closeDatasets

SYNOPSIS: err = short MOD_IO_closeDatasets(void)

DESCRIPTION: This function closes all currently open files.

INPUTS: (n/a)

OUTPUTS: (n/a)

RETURN: err: The return status value is Oif successful; error messages otherwise.

EXAMPLE: #include “MOD_IO_prototypes.h”

#include “AVHRR.h”

if(MOD_IO_closeDatasets () != O) printf(“Not being able to close files is bad
news\n”);

COMMENTS: This function just calls the MOD_IO_closeInputDataset and
MOD_IO_closeOutputDataset functions. See those descriptions for details.

ERROR See MOD_IO_closeInputDataset and MOD_IO_closeOutputDataset function calls.
MESSAGES:

19

MOD_IO_closeInputDataset

SYNOPSIS: err = short MOD_IO_closeInputDataset(short <inputFileId>)

DESCRIPTION: This function closes the user specified input dataset file and deallocates (frees) all
memory (malloc’ed) associated with the fde designator <inputFileId>.

INPUTS: short <inputFileId>: The file designator provided to the user by the
MOD_IO_openInputDataset function.

OUTPUTS: (n/a)

RETURN: err: The return status value; O for normal operation.

EXAMPLE: #include “MOD_IO_prototypes.h”

#include “AVHRR.h”

fileIn = MOD_IO_openMasterInputDataset(...

if(MOD_IO_closeInputDataset (ffleIn) != O) printf(“Not being able to close files is
bad newsb”);

COMMENTS:

ERROR “closeInputDataset: Invalid input stream id”
MESSAGES:

20

—

SYNOPSIS:

DESCRIPTION:

INPUTS:

OUTPUTS:

RETURN:

EXAMPLE:

COMMENTS:

ERROR
MESSAGES:

—

MOD_IO_closeOutputDataset

err = short MOD_IO_closeOutputDataset(short <outputFileId>)

This function writes the trailer record to the output dataset fde and deallocates (frees)
all memory (malloc’ed) associated with the file designator <outputFileId>.

short <outputFileId> : The file designator provided to the user by the
MOD_IO_openOutputDataset function.

(n/a)

err: The return status value; O for normal operation.

#include “MOD_IO_prototypes.h”

#include “AVHRR.h”

fileOut = MOD_IO_openOutputDataset(...

if(MOD_IO_closeOutputDataset (fileOut) != O) printf(“Not being able to close
ffles is bad newsk”);

“closeOutputDataset: Invalid output stream id”
“can’t write EOF”

21

SYNOPSIS:

DESCRIPTION:

INPUTS:

OUTPUTS:

RETURN:

EXAMPLE:

COMMENTS:

MOD_IO_openInputDataset

infd = short MOD_IO_openInputDataset(char * @ileName>,
DataDescriptor * <datasetType>)

This function opens a dataset in tead only mode. The fde name is supplied by the user
in the character string cFileName>. The dataset header is read from the disk file and
compared with the contents of the data descriptor passed to this routine.

char * d31eName> : The user specified fully qualifled input dataset fde name.

DataDescriptor * <datasetType> : The address of the formal name of the data
descriptor as defined in the associated data product header include file.

(n/a)

infd : The positive data control block (dcb) number that the library uses in subsequent
functions to designate which input stream is being accessed.

#include “MOD_IO_prototypes.h”

#include “AVHRR.h”

#define FILENAME “/user/data/modis/Level. lB/mydata.test.data. sire”

inputFileDcb = MOD_IO_openInputDataset(FILENAME, &AVHRRheader);

The formal name “AVHRRheader” must exist in the data product header include file
“AVHRR.h”. This applies to all data product header include files. The user must not
alter the returned value: “inputFileDcb” in the above example. An error condition will
be reported if a master input dataset is not already open. The variable “infd” can be an
array element, e.g., “infd[2]”.

(Error messages on next page)

22

ERROR “Sorry, you must specify a master scancube file first”
MESSAGES: “Sorry, you have already used up all input DCBS; max = enumbem” “can’t recover”

“Sorry, unable to open input file diie name>” “can’t recover”
“Can’t read scancube volume header”
“Sorry, wrong instrument !“
“Sorry, wrong domain !“
“Sorry, wrong datatype!”
“Sorry, no Version=<numbe~!”
“compiled version: <numbeb, dataset version <numbe~” “Incompatibility between

library version and dataset”
“Sorry, no nbands=<numbeb!”
“compiled # bands != actual datasttwun header # bands”
“Sorry, no nlines=ammbe~!”
“compiled # lines != actual datastream header # lines”

23

MOD_IO_openMasterInputDataset

SYNOPSIS: infd = short MOD_IO_openMasterInputDataset(char * <FileName>, DataDescriptor
* <datasetType>)

DESCRIPTION: This function opens a master dataset in read only mode. The fde name is supplied by
the user in the character string <FileNarne>. The dataset header is read from the disk
file and compared with the contents of the data descriptor passed to this routine.

INPUTS: char * -dWeName>: The user specifkd fully qualiiled input dataset ffle name.

DataDescriptor * zdatasetType>: The address of the formal name of the data
descriptor as defined in the associated data product header include file.

OUTPUTS: (n/a)

RETURN: infd : The positive dcb number that the library uses in subsequent functions to
designate which input stream is being used.

EXAMPLE #include “MOD_IOJnmypes.h’

#inchde “AVHRR.h”

inputFiieDcb = MOD_IO_openMasterInputDataset(FILENAME, &AWRRhede r);

COMMENTS: This routine calls MOD_IO_openInputDataset internally to do most of the work.

ERROR See MOD_IO_openInputDataset reference section, plus:
MESSAGES: “Sorry, you cannot open more than one Master input file” “ndcb_in = <number>”

“Can’t recover”

24

SYNOPSIS:

DESCRIPTION:

INPUTS:

OUTPUTS:

RETURN:

EXAMPLE:

COMMENTS:

ERROR
MESSAGES

MOD_IO_openOutputDataset

outfd = short MOD_IO_openOutputDataset(char * <character string>,
DataDescriptor * <datasetType>)

This function opens a dataset in write mode. The file name is supplied by the user in
the character string <FileName>. The type of the data product is specified by the user
as a pointer to the data descriptor “edatasetType>”

char * <FileNarne> : The user specified fully qualified output dataset file name.

DataDescriptor * <datasetType> : The address of the formal name of the data
descriptor as defined in the associated data product header include file.

(n/a)

outfd : The positive dcb number that the library uses in subsequent functions to
designate which output dataset is being used; -1 for no more library internal dcbs
available.

#include “MOD_IO_prototypes.h”

#include “AVHRR.h”

outputFileDcb = MOD_IO_openOutputDataset(FILENAME, &AVHRRheader);

The formal name “AVHRRheader” must exist in the data product header include file
“AVHRR.h”. This applies to all data product header include files. The user must not
alter the returned value: “outputFileDcb” in the above example. The variable “outfd”
can be an array element e.g., “outfd[1]”.

“Sorry, you have already used up all DCBS; max = <numbe~”
“Sorry, you must specify a master scancube file fiist”
“Unable to open output fiie diie name>” “can’t recover”
“can’t support writing multiple scancube types within a scancube now!”
“Can’t write output header”

25

SYNOPSIS:

DESCRIPTION:

INPUTS:

OUTPUTS:

RETURN:

EXAMPLE:

COMMENTS:

INFORMATION
MESSAGES:

ERROR

MOD_IO_printDataDescriptor

void MOD_IO_printDataDescriptor(DataDescriptor * cdata.setType>)

The function prints the contents of the user specified data descriptor “<datasetType>”
to stderr. It is useful for informational purposes when debugging user written
algorithms and data product header include fdes.

DataDescriptor * <datasetType> : The address of the formal name of the data
descriptor as defined in the associated data product header include file.

(n/a)

(n/a)

#include “MOD_IO_prototypes.h”

#include “AVHRR.h”

fdin = MOD_IO_openMasterInputDataset(“myfile”, &AVHRRheader);

MOD_IO_printDataDescriptor(&AVHRRheader);

The data descriptor contents are printed to stderr in labeled and tabulated form.

“Read Data Descriptor:”
name = <descriptor name>”
data types/scancube = <numbe~”
bands = <number>” (bands are equivalent to parameters)
lines = <number>”

“ resolution for band <numbe~ = <nuben” (multiple occurances)
“ size of band <numbe~ = enumbeo bytes” (multiple occurances)

(none)
MESSAGES:

26

-—

MOD_IO_readSwath

SYNOPSIS: index = long MOD_IO_readSwath(short <inputllcb>, void * dnputBuffer>)

DESCRIPTION: This function reads a scan cube from the user specified input dataset.

INPUTS: short <inputDcb>: The input file designator ~turned by the
MOD_IO_openMasterInputDataset or MOD_IO_openInputDataset routines.

OUTPUTS: void * 4nputBuffe-: The address of the user defined scan cube data structure, into
which the library places the updated pointers to the new data.

RETURN:

EXAMPLE:

index->if positive: a sequential index number of the scan cube that has just been read,
starting from one (1).
index->if negative: an error return status value: -1 for an end of file (EOF)

#include “MOD_IO_prototypes.h”

#include “AVHRR.h”

AVHRRscancube ibufi

inputDcb = MOD_IO_openMasterInput(...

index = MOD_IO_readSwath(inputDcb, &ibuf);

COMMENTS: This call brings in the next scan cube from the specified dataset contained on disk into
library managed and allocated memory. Pointers to the scan cube elements Me set in
the user’s data structure to point to the data in the library data area. The user may
access any band (or parameter) and pixel through the scan cube data structure
definitions. The data structure also provides access to the spatial sizes of all bands (or
parameters). See code examples elsewhere in this document.

(Error messages on next page)

27

ERROR “No input stream to read!”
MESSAGES: “readSwath: Invalid input stream id”

“Can’t read scancube header”
“Sorry, cannot overwrite scancube with index=<numbeb”
“Warning: scancube header doesn’t have an id”
“scancube header doesn’t have # frames”
“Bad science data read; can’t recover”
“Bad SD cal data read; can’t recover”
“Warning: scancube header doesn’t have SD mode”
“SD present, but incompatible .h file”
“Bad SRCA cal data read; can’t recover”
“Warning: scancube header doesn’t have SRCA mode”
“SRCA present, but incompatible .h file”
“Bad BB cal data mad; can’t recover”
“BB present, but incompatible .h file”
“Bad SV cal data read; can’t recover”
“SV presen~ but incompatible .h file”
“Bad EM cal data read; can’t recover”
“EM presen~ but incompatible .h file”
“Sorry, can’t allocate space for bufindex =amrnber>, band <numbe~”
“Sorry, incomplete read; wanted <number of bytes>, got <number of bytes>”
“Sorry, can’t allocate space bytes data, bufindex cnumbe~”

28

SYNOPSIS:

DESCRIPTION:

INPUTS:

OUTPUTS:

RETURN:

EXAMPLE:

MOD_IO_writeSwath

err = short MOD_IO_writeSwath(short <outputFileId>)

This function writes the contents of the current output buffer to the dataset specified
by the user supplied outputFileId, where outputFileId was obtained from the
MOD_IO_openOutputDataset call.

short <outputFileId>: The value returned by the MOD_IO_open@tputDataset call-

(n/a)

err: The return status value: Oif every thing is OK, -1 if there is no output file to write
to.

#include “MOD_IO_prototypes.h”

#include “AVHRR.h”

OutputFileId = MOD_IO_openOutputDataset(.....

err = MOD_IO_allocateOutputBuffer(....

(place values in the output buffer)

err = MOD_IO_writeSwath(OutputFileId)

COMMENTS:

ERROR “writeSwath: Invalid output stream id”

MESSAGES: “Sorry, no output buffer has been allocated for product #<numbem (nothing to
write!)” “can’t recover”

“Sorry, unable to write <number> bytes; only wrote <numbeb bytes for output data
stream #<number>” “can’t recover”

“ERROR: cannot match next output id with master input buffers”
“Output id =<number>, input list= <several numbers>” “can’t recover”

“arglist write too long” (internal error)

“Can’t write output scancube header”

29

I

LIBRARY ACCESS AND INSTALLATION

The library source code, make fdes, and test programs m contained a UNIX tar fde. This maybe ob
from the /pub directory on modis-xl.gsfc.nasa. gov via anonymous ftp and contains a README file w
the latest details and dataset contents descriptions. It also contains an INSTALL file with full installat
instructions. The following list shows a sample of the fdes contained in the tar distribution:

Table 2. List of Files

FILENAME

README

INSTALL

MOD_IO_lib.c

MOD_IO_prototypes.h

MOD_IO_lib.h

MOD_IO_headerDefs.h

DataDescriptor.h

AVHRR.h

(additional files)

TIOh!

a file containing the latest information with a description of all the oth
ffles in the distribution

installation instructions for addhg this library to your suite of compute
based tools

the MODIS SDST utility library (all library functions)

ANSI function prototypes for library functions

data structures for scan cube buffer descriptions and DCBS; NOT expl
needed by application programs

defines for constants in the library specific to the dataset headers (also
used by non MODIS scan cube generators)

data structure definition for formal Data Products

a sample AVHRR data product header file

sample algorithms and test cases (see the README file for details)

APPENDICES

Appendix A - MODIS Spatial Domain Descriptions

The MODIS Scan Cube Spatial Domain

The MODIS instrument generates raw (digital counts) data for each detector within the instrument. This
set of detectors scans across (perpendicular to) the satellite orbit ground track to produce an amount of
data designated as a scan cube (see Figure 7). Multiple scan cubes m collected together to form a data
granule. Multiple granules are collected into an orbit. The sizes of this basic scan cube are summarized
below. Scan cube details are found in the MODIS Data Structure, Rates, and Volumes document as
referenced in the Bibliography.

Trailer record
vdable length

\A

OBC
4 setsof 15to 50 frames

/

Science Frames->

commendable,1354currenlly

Header record~
variablelength

250m bands

Fr

10 to 40 scan lines -

Figure 7. MODIS Level-1 simplified scan cube.

31

The MODIS instrument has the capability of setting the across track size of the scan cube by ground
command. The current information indicates that this is not expected to be varied often, but plans are being
considered to lower the data transmission rate possibly by varying the across track size as a function of
latitude. In any case, the algorithm developer should be aware that the number of across track pixels is not
a constant. For the scan cube domain, the algorithm developer deals with a single band of MODIS data
covering an entire scan cube swath. The sizes given are in pixels, not kilometers. The pixel ground
coverage sizes vary with the scan angle from nadir. The collection of detector values from all the bands that
cover a single nominal (at nadir) one (1) kilometer area are called a spatial element. All bands of data are
specified to be co-registered within 20 percent of the spatial element IFOV and are expected to be
co-registered within 10 percent of the IFOV. Note that this speciilcation applied to the registration
knowledge. A table of band to band offsets will be published by the MODIS SDST and maybe included as
part of the MODIS geolocation.

Table 3. MODIS Level-1B Data Product Scan Cube Sizes

ITEM

number of bands

across track pixels; bands 1 and 2

across track pixels; bands 3 to 7

across track pixels; bands 8 to 36

along track pixels; bands 1 and 2

along track pixels; bands 3 to 7

along track pixels; bands 8 to 36

geolocation data

IfOWMAiVY

36

5,416

2,708

1,354

40

20

10

8

FIXED OR VARI ABLE

freed

variable

variable

variable

freed

fMed

fxed

freed

The MODIS Level- 1A Data Product consists of the raw counts with a separate Geolocation Data Product
associated with each individual spatial element. The raw counts are available for the Earth view as well as
the various onboard calibrator (OBC) views. This raw data product is expected to be of use only to the
Level- lB calibration process. (The OBC access functions are described in an appendix.) The science
algorithms are expected to use the at-satellite radiances contained within the MODIS Level- lB Data
Product. This data product contains the radiance energy generated by viewing the Earth and measured at
each detector within the MODIS scanning swath. These values are spatially coincident with the raw counts
and have not been spatially resampled. The geolocation information associated with the MODIS Level-1A
product therefore applies to, and will be associated with the Level-lB Data Product. The Level-1A dataset
components will bes ynchronized with the Level-1A Metadata and the associated scan cube domain
Geolocation Data Product. The Level- lB dataset components will similarly be transparently aligned with
the Level- 1B Metadata and this same scan cube domain Geolocation Data Product. All of the data sets are
accessible from the identical library calls, via separate data structures.

32

The MODIS Level- 1A Data Product also contains information derived from the onboard calibrators
(OBCS) in two forms. The first data form is also in the basic structu~ of a scan cube, but is measured by
imaging the OBC radiance sources in place of the Earth based radiances. There will also be occasional
Moon viewing data in either or both of the Earth views and OBC space views. The second form of OBC
data is derived from the engineering parameter measurements that are multiplexed within the packet data.
These are separated into a separate calibration data product for use by the Level-lB process. The library
calls to access these portions of the MODIS data are not included in this document.

The MODIS Level-2 Data Product data sets can also be accessed and generated with library calls included
in this SDST utility library. This allows previously generated MODIS Level-2 products to be used as inputs
for the creation of other Level-2 Data Products.

Data Products in this scan cube domain will not be temporally or spatially coincident with any other scan
cubes or domains and must be resampled or otherwise aggregated into a rectitied or mapped domain for
true spatial registration. All true spatial operations in the scan cube domain are left to the user.

The MODIS Rectilinear Domain

Algorithms that operate on a single spatial pixel area at a time, and do not depend on the exact direction
and distance to adjacent spatial pixels, can generate science values in the scan cube geometry domain.
These values can then be mapped directly from the scan cube domain onto a Level-3 map projection or
similar geobased database. However, algorithms that depend on spatial directions and distances can easily
use either a rectilinear MODIS data domain or a mapped data domain as input when deriving science Data
Products.

The rectilinear domain is defined to be a coordinate system that uses the spacecraft ground track as one
axis, the scan perpendicular to the ground track as the second axis, and radiance data values resampled to a
uniform distance along each of these axes..

Only the MODIS Level- lB radiance values and MODIS Level-2 Data Products are appropriate for the
rectilinear domain. The MODIS Level- 1A data is best represented in the scan cube domain and is not
appropriate to the rectilinear domain. Note that MODIS data that uses or passes through a rectilinear
domain will be resampled twice: once from scan cube to rectilinear, and again going from rectilinear to
mapped. For this reason, it is best to keep algorithms in the scan cube or mapped domain.

The MODIS Mapped Domain

This designation is used for all Data Products that have been transformed, via a map projection, onto a flat
surface such as a piece of paper or display pixel indices (the electronic equivalent). A map projection can be
defined as the orderly transfer of Earth surface positions to corresponding points on a flat surface. This
definition can be further generalized into a three dimensional hierarchical data structure such as a quad tree,
where each area on the flat surface is successively divided into smaller areas. Since the surface of a sphere

33

cannot be forced directly onto a flat plane without simplifying approximations, several types of maps are
expected to be used to represent either the entire Earth global data sets or sections of the globe such as
continents.

Mapped domain library calls will be defined in a separate document on MODIS Level-3 toolkit functions.

34

Appendix B - Data Product header include file description

A series of data product header include fdes that describe the data structures foc the input and output
formal Data Products, static arrays of characters describing the dataset contents, ANSI function
prototypes, and global variables are included as part of the library distribution. These are for use with “C”
programs only. FORTRAN equivalents are not available at the present time. Note that FORTRAN90 will
enable the use of these types of headers while ANSI FORTRAN77 will not. Each formal Data Product has
an accompanying header file that contains the product specific information which contains dynamic
variables and is accessible to the science algorithm developers. The set of all of these Data Product header
files will be created in cooperation with the algorithm writers, maintained by the MODIS SDST ATT
members, and made available for use by all algorithm developers. These headers will be coordinated with
the science data product office (SDPO) definitions for the formal Data Products and parameters and placed
under configuration management by the SDST.

Each Data Product header include file contains the data structure definitions for each of the parameters that
are a part of every formal Data Product. Data product parameters are the components of each formal Data
Product such as the data product itself, values for the precision of the data product, all quality assurance
(QA) parameters, and intermediate informal data products associated with the formal Data Product. The
data types (short, long, float, etc.) for each parameter are defined here along with the sizes, resolutions, and
dimensions of the spatial extent of each parameter. Two “C” code modules are also included; one to
initialize the data structure (similar to a constructor in C++) and one to set the pointers appropriately for
user access. These are “hidden” in this file so that the user need only alter the algorithm source code to
include the appropriate file without the concern of linking separate code modules. There could be situations
where it is desirable to put these code modules into a separate file. If so, these situations can be easily dealt
with on an individual basis.

Note that the individual bands of MODIS instrument data in the Level-1A and Level-lB Data Products are
equivalent (for library access) to data product parameters and are accessed by the user via the same library
call mechanism.

The include files required for algorithm development are: “MOD_IOJrot ot ypes. h” ,
“<Input Product . h>”, and “<Output Product. h>”. ANS1 prototypes for all library calls are
included in the “MOD_IO@rototypes. h” file. The Data Product detailed descriptions are included in

a header file that k unique to each instance of a Data Product, either input or output
(“<InputProduct h>” and/or “<Output Product . h> “). A fully commented sample data

product header file for AVHRR data in a MODIS scan cube format is included in Appendix D. The
“Dat aDes c ript or. h” include file, referenced by the < *. h> files, defines a flexible data format which
is then used by the product specific < * . h> files to further describe each particular formal Data Product.

Each product specific header file also includes two code modules which are invoked by the library. The first
module, an initialization section, is called when each input dataset is first opened. This module customizes
the DataDescriptor data structure, which is then compared by the library with information in the actual
dataset volume header. The second module is called each time a scan cube is read into memory, or an
output scan cube is allocated. This code defines and passes the correct data pointers to the user’s program
for accessing the input or output scan cubes that are actually in the library memory space.

35

FORTRAN (FT’N77) accessible function calls maybe written at a later date if there is a user demand for
FI’N77 library functions. If written, these are expected to be “wrappers” to the “C” function calls that allow
lTN77 access to data structure contents. They will allow algorithms written according to FTN77 standards
to have access to the MODIS data, but not efficiently. Exceptions to the FTN77 ANSI standard (such as
include files) will have to be taken to accomplish this task. Note that algorithms written in FORTRAN 90
will allow direct access to data structures via pointer mechanisms that are similar to the “C” language. This
is the SDST recommended approach after approval for algorithm development in FORTRAN.

36

Appendix C - The DataDescriptors.h Library Include File Description

This is the include file used by the library and referenced in the formal Data Product header include files. It
declares the data structure for the data description area which contains pointers to data product unique
substructure definitions.

/*
I* MODIS scancube i/o library
/* SDST
/* Virginia Kalb, NASA/GSFC 920.2
/* moms Goff, RJX
/*
/* RCS keywords:
/’ $Header: DataDescriptor. h,v 2.1 94/08/16 09:57:49 gk ~ $
/* $Date: 94/08/05 09:57:49 $
/’ $Source: /disk5/nmdis/sim/~D_IO/RCS/DataDescriptor.h,v $
/’
/’
#ifndef DATADESCRIF’TOR
#define DATADESCRIP’TOR
struct FPTR {

void (’fptr) ();

*/
*/
*/

*/
*I
*/
*/
*/
*/
*/

*I
*I

This declares afunction pointerdatatype to facilitate thesubsequent declaration ofan arrayoffunction
pointers needed for the Level-lB data. TheMODIS Level- lBsubcubes contain the Earth (science) view
and the four sets of OBC data (SD, SRCA, BB, Space view).

};
typedef struct FPTR FP’I’R;

struct DataDescriptor {
void (*init) () ; <- Entry point to the initialhtion routine.

short npt rs; <- How many pointers to subcubes are m@ted.

FP’TR *set; <- Pointer to the army of subcubes.

char *name; <- ‘Thedataset fotmal name, contained within the datase~

long nbands; <- The number of parameters (bands) in this formal Data Product.
long nlines;

The number of lines (detectors) in the along track direction for the finest spatial resolution for this formal
Data Product. For example, this corresponds to the number of along track detectors for MODIS bands 1
and 2 which is 40.

long *nres;

For each parameter (band), this is the resolution divisor to obtain the actual number of along track
detectors for that parameter (band). For example, MODIS bands 3 to 7 have an nres equal to 2 (20
detectors in the along track direction), and bands 8 to 36 have an nres value of 4 (10 detectors in the along
track direction).

37

long ‘nsize;

The size in bytes of each parameter value. For example, MODIS band 1 has 2 bytes per readout, 40
detectors along track, and 4 times the nominal 1354 samples along scan for a final value of 433280 bytes.

};
typedef st ruct Dat aDescriptor DataDescriptor;
#endi f

38

Appendix D - Data Product Header example

This section contains an example of a generic Data Product header file with embedded comments. A
machine readable copy of this file is available as part of the library distribution. The source code is in the
Courier typeface and comments following each section of code are in the normal Times Roman typeface.

The formal Data Product header include fde contents are divided into five (5) main sections. The first
section defines header includes and internal definitions. The next two sections set up the data structures for
each element of a parameter within a data product, and the order of the parameters within a scan cube. The
remaining two sections are functions that populate (provide instance specific contents for) the dataset
valuables and each scan cube variable respectively.

/’ *I
/* MODIS scancube i/o library */
/* SDST */
/* Virginia Kalb, NASA/GSFC 920.2 ‘/
/* ThOl_I13SGoff, ~ */

/’ *I
/* RCS keywords: */
/’ $Header: PRODUCT.h,v 2.0 94/08/05 17:01:26 gk Exp $ */
/’ $Date: 94/08/05 17:01:26 $ */
/* $Source: /disk5 /nmdis/sim/MOD_IO/RCS /PRODUCT. h, v $ ‘/
/’ */

The RCS revision control system is used internally for cotilguration management during the code
development stage.

#if ndef PRODUCT
#clef ine PRODUCT

The above cpp preprocessor directives prevent duplicate compiling of this module from occurring.

#include <stdio. h>
#include <stdlib. h>

These are the standard UNIX header includes from the standard operating system location for system
include files. They are used for both ANSI prototyping and function macros.

#include “DataDescriptor. h“

This header file contains the MODIS library internal structure that holds values that are fixed for a given
product. It contains the data structure specifications for the PRODUCTheader.<components> data
structure.

#clef ine PRODUCT_HEADER_STRING “Product -speci f ic i dent if er”

This define statement declares the formal name of each user’s Data Product. No spaces are allowed. This
character string will contain something like: “Leve 1-1 B_radi antes” for the MODIS Level-1B Data
Product. The spatial domain designation is contained within the datasets. This allows differing spatial
domains containing the same data types to be used interchangeably by the library and hence the user.

39

#define DUMMY1

This is a dummy number (could be any number actually) used to satisfy the compiler when declaring the
variable dimension component in a multi-dimensional array. The data structures that allow for single or two
dimensional access to the data are illustrated later in this listing.

typedef double PRODUCTpamd;
typedef long PRODUC~ann2;
typedef unsigned char PRODUCTparm3;

These type definitions specify the data type of the formal Data Product parameters. In this case, the Data
Product has three Parameters (these a~ bands for Level-1A and Level- lB). The first parameter is of type
double (64-bit floating point / real), the second is of type long (32-bit integer), and the last parameter is of
type single byte (8-bit). The data type is user-driven.

/* Structure for individual bands/parameters:
struct PRODUCTPARM1{

PRODUC~annl *data;
long nAlongTrack;
long nAlongScan;
long nPixels;

};
typedef st ruct PRODUCTPARMl PRODUCTPARMl;

*/

This data structure declaration defiies the first product parameter (the data part of which has been
specified above) to be a data structure containing a pointer to the spatial data array for this parameter, an
along track and across track dimension, and a total number of pixels. Note that the data dimensions are
adjusted by the library to reflect the resolution of each individual parameter.

st ruct PRODUCTPARM2{
PRODUC~ann2 *data;
long nAlongTrack;
long nAlongScan;
long nPixels;

};
typedef st ruct PRODUCTPARM2PRODUCTPAR14.2;

(Same as the above description.)

st ruct PRODUCTPARM3{
PRODUC’Tpann3 *data;
long nAlong’Track;
long nAlongScan;
long nPixels;

};
typedef st ruct PRODUCTPARM3PRODUCTPARM3;

(Same as the above description.)

/* Structure for scancube output:
struct PRODUCTscancube {

PRODUCTPAR141pl ;
PRODUCTPARM2P2 ;
PRODUCTPARM3p3 ;

*/

40

};
typedef struct PRODUCTscancube PRODUCTscancube;
/’ User should declare an output structure like this: */
/’ PRODUCTscancube obuf; ‘/

This statementdeclares the datastructure type foruser access as asingle lineararray. Theexamples given
in the main section of this document in the scan cube domain functions - introduction section, illustrate its
use from a user’s perspective.

/* Structure for 2d scancube output: */
/* CAREFUL! The rightmst array dimension MUST MATCHTHE */
/’ ACTUAL # OF SPATIAL ELEMENTS for that band! */

/* *I

Struct PRoDucT2Dparml {
PRODUCTparntl XY[DUMMY][10];

};
typedef struct PRODUCT2Dparml PRODUCT2Dparml;

More type definitions: in this case to allow two dimensional access to the spatial data. The array name xy is
used as a pointer to this two dimensional array. Note that the requirement that the varying dimension,
corresponding to the MODIS variable number of frames across scan cubes, is in the first set of brackets []
with any number (DUMMY) used as a place holder. The number in the second brackets [] must correspond
to the actual along track (across scan) size for each parameter. The order of the indices in “C” is reversed
from those in FORTRAN.

st ruct PRODUCT2Dpati {
PRODUCTpamQ w [DWI [10 1 ;

};
typedef struct PRODUCT2Dparm2

(Same as the other parameters)

Struct PRoDucT2Dparm3 {
PRODUC’Tparm3 xy [DUMMYI [10 1 ;

};
typedef struct PRODUCT2Dpati

(Same as the other parameters)

PRODUCT2Dparm2;

PRODUCT2Dparm3;

/* Structure for individual bands/parameters (2D) :
St ruct PRoDucTPARMl_2.D {

PRODUCT2Dparnll *data;
long nAlongTrack;
long nAlongScan;
long nPixels;

};

typedef struct PRODUCTPARM1.2D pRODUCTp-_2D;

These two dimensional access methods are effectively the same as the previous typedefs for
PRODUCTPARM 1: *data is a pointer to the actual scan cube binary data.

Struct PRoDucTPARM2_2D {

*/

41

PRODUCT2Dparm2 *data;
long nAlongTrack;
long nAlongScan;
long nPixels;

};
typedef struct PRODUCTPARM2.2D PRODUCTPARM2_2D;

(Same as PRODUCTPARM1.2D)

Struct PRoDucTPARM3_2D {
PRODUCT2Dparm3 *data;
long nAlongTrack;
long nAlongScan;
long nPixels;

};
typedef struct PRODUCTPW.2D PROWCTPARM3_2D;

(Same as PRODUCTPARM1.2D)

struct PRODUCT2Dscancube {
PRoDucTPARMl_2D pl;
PRoDucTPARM2_2D p2;
PRoDucTPm_2D p3;

};
typedef struct PRODUCT2Dscancube PRODUCT2Dscancube;
/’ User should declare an output structure like this: */
/* PRODUCT2Dscancube obuf; */

This statementdeclarcs thedatastructure typefor useraccess as a twodimensional array. Theexamples
giveninthemain swtionofthisdocument inthescancubedomains functions-detailed section,illustrate
its use from a user’s perspective. Note that ideally, one scan cube definition would be given in each header
file. Both the one and two dimensional definitions are given in this “PRODUCT.h” sample header file for
illustration purposes. Other definitions could be made at the user’s request, but care must be exercised to

propagate any changes to the intrinsic function code and other modules within the header file.

Now that the data structures and declarations a~ over with, we can populate instances of these complex
variables with the values appropriate to this formal Data Product by invoking actual executable code.

void PRODUCTinit () ;
void PRODUCTsetpt rs (void **, PRODUCTscancube *, long) ;
Static DataDescriptor PRODUC’Iheader =

{PRODUCTinit, PRODUCTsetptrs, NULL, 0,0, NULL, NULL};

42

Lets start with the ANSI prototypes for the functions that follow, and initialize (declare space for) the data
descriptor structure. This is executed for each dataset open.

void PRODUCTinit ()
{
static short executed = O;

if(executed > O) return; /’ don’t want or need to execute this more than
once ! */
executed = 1;

The variable executed is used to insure that this function is executed only once.

PRODUCTheader. name = PRODUcT_H~ER_S~lNG;
PRODUCTheader .nbands = 3;
PRODUCTheader .nlines = 40;
PRODucTheader. nres = (long *)rmlloc (PRODUCTheader.nbands*sizeof (long));
PRODUCTheader.nres [O] = 4;
PRODUCTheader.nres [l] = 4;
PRODUCTheader.nres [2] = 4;
PRODUCTheader.nsize = (long *)malloc (PRODUCTheader.nbands*si-zeof (long)) ;
PRODUCTheader.nsize[Ol = sizeof(PRODUCTPamll);
PRODUCTheader.nsize[l] = slzeof(PRODUCTparm2);
PRODUCTheader.nsi.ze[2] = sizeof(PRODUcTpati);
}

This function populates the PRODUCTheader.<components> structurewith the values appropriate tothis
formal Data Produc t. These values apply to theentire dataset. String sizes predetermined atcompile time,
and nresandnsize arrays are allocated atruntime. See the ’’DataDescriptors.h” section in the appendix to
this document for the structure declaration whichdefmesthe datatypesforeach structure element name.

void PRODUCTsetptrs (void **obuf, PRODUCTscancube *o@ta, lon9 nframes)

This function is entered on each allocation of a scan cube. It users the library supplied pointer oda t a, and

library supplied pointer ‘obuf to the user declared buffer obuf, along with the library supplied
n f rames to calculate the values of the scan cube dimensions nAl ongTra ck and nAl ongS can and the
scan cube size npixe 1s. The value of n f rames is extracted by the library from each scan cube header.
These values, along with the starting addresses (pointers) of the data array, are then placed into the user’s
instance of the formal Data Product data structure. This is repeated for each parameter separately, thereby
allowing the spatial dimensions to vary across bands (parameters).

{
long across, down;

odata->pl. data = obuf [01 ;
down = PRODUCTheader. nlines/ PRODUCTheader. nres [01 ;
odata->pl. nAlongTrack = down;
across = nf rames / PRODUCTheader. nres [01 ;
odata->pl. nAlongScan = across;
odata->pl. nPixels = down’across;

odata->p2. data = obuf [1] ;
down = PRODUCTheader. nlines / PRODUCTheader. nres [1] ;

43

odata->p2. nAlongTrack = down;
across = nframes/PRODUCTheader.nres [1];
odata->p2.nAlongScan = across;
odata->p2.nPixels = down*across;

odata->p3.data = obuf[2];
down = PRODUC’Theader.nlines/PRODUCTheader.nres [2];
odata->p3.nAlongTrack = down;
across = nfranws/PRODUCTheader.nres [2];
cdata->p3.nAlongScan = across;
odata->p3.nPixels = down’across;

return;
}
#endi f

End ofthisdataproduct header includefile.

44

Appendix E - MODIS Dataset Internal Format

This section details the contents of the dataset that are ingested and created by the SDST utility library. The
dataset contents implement a free field technique to determine the sizes and location within the Dataset for
the various components of the Dataset. This allows data from multiple instrument sources and multiple
input and output Data Products to be handled by the library in a manner that is transparent to the user.

l---i
VOLUME
HEADER

XH~AN~E

SCAN CUBE
CONTENTS

I SCAN CUBE
HEADER I

t--i

SCHAENAW:E

SCAN CUBE
CONTENTS

(etc.) ~

TRAILER I

Figure 8. Overall dataset contents.

Each Dataset is composed of three main sections: a Dataset volume header, multiple instances of the scan
cube header and data, and a trailer as shown in Figure 8. All headers sections and the trailer section contain
information in ASCII form that can be read (carefully) with any file browser or editor. Recommended file
browsers are the UNIX od command, the gnu Ie= program, and the SDST written fd program. These
programs can examine mixed ASCII and binary files while not creating problems with communications
protocols. The od and fd programs can handle byte offsets for binary data that is not aligned on word

boundaries. The UNIX head, tail, and more programs will cause problems with terminal based
communications when examining binary data.

The Dataset is organized as a self describing data structure. Information is contained in each section that
informs the library of the sizes of the following sections. This technique allows a byte stream oriented
operatings ystem (i.e. UNIX) to define variable length and mixed type (ASCII/ text and binary) records.
Data is organized in this byte stream by placing the along track pixels in adjacent words of memory to form
a vector, vectors are then sequenced across track to form a band or parameter spatial area, then multiple
areas are sequenced to form the entire scan cube. This ordering in memory allows the across track

45

_. .-—. ..

dimension to vary among scan cubes without prohibiting two dimensional access by “C” and FORTRAN
compilers. The illustration in Figure 9 assumes a data product composed of three parameters, each of type
byte (unsigned character or Integer*l) with nominal spatial resolutions of 250 meters, 500 meters, and 1.5
kilometer. This is a fictitious instrument for illustration purposes only. The reader is encouraged to examine
the small datasets included in the library distribution for actual parameter values and compare these with
the sizes in the diagram and described in this text

Across Track -

1

nres=1
288

elements

g

J?

1

nres=2
72

4 elements
g
R

1

nres=6
8

elements

(numbers in the boxes are the array elements in a byte stream)

Figure 9. Memory allocation for variable coincident spatial sizes.

The numbers in this diagram represent the linear addresses of the byte stream. The three spatial areas with
resolutions of 1, 2, and 6 can be spatially registered on the ground, but are sequential in computer memory.
The illustration given here does not represent any of the current datasets and is used for illustration
purposes only.

The Dataset volume header contains information that is required by the library to recognize and interpret
the contents of the Dataset. This includes the source of the data (must be “MODIS”), the type of data
(unique to each formal Data Product), and the version of the Dataset contents. This Dataset version must
agree with, or otherwise be compatible with, the library. It is the library’s responsibility to verify this. Other
items in this header are compared with the DataDescriptors in the library as a sanity check to ensure that
the library and user code are using the same data formats and types. The remainder of the volume header
contains additional items unique to each Data Product and any comment fields included by the Dataset
generator.

The scan cube section contains a scan cube header and data in a binary form. The scan cube header is also
in the same free field format as the volume header. Dataset parameter values are reset as each scan cube is
accessed. This allows the handling of binary data that can change with each scan cube.

46

The binary section contains the actual data values in the data type defined within each Data Product
“<product. h>” include file. The data is treated by the library as a byte stream whose size is the across

track size times the along track times the number of bytes in the data product, where the number of bytes in
the data product is the sum of the number of bytes for each parameter.

The trailer contains the key character string “EOF” to designate a logical end of fde. AUother tokens in the
trailer are ignored in this release, but may contain metadata information in the future.

All of the headers contain ASCII data in a free field format. Each field, called a token, consists of all the
characters that are delimited by ‘white space’, whe~ white space is defined to be blank (space) characters,
tab characters, or commas. The f~st three tokens me recognized by the library as character strings that are
compared with information in the “<product. h>” headers associated with each format Data Product.
AUtokens that contain an equal (=) sign are recognized as “C” type variables and values. These variable
names are formal names used by the library to determine the sizes of Data Product parameters, spatial
resolutions of the pixel elements, and the resulting sizes of the binary data that follow. AU other tokens in
the header are ignored by the library and can contain any user defined comments. Details are given in the
following table.

Table 4. Header Parameter Names

FORMAL NAME

Version

headerLines

nbands

dines

nres

nsize

nframes

scancubeId

nSDframes

SDmode

nSRCAframes

SRCAmode

nBBframes

BBtemp

DESCRIPTION

The version number of the library that can access this Dataset

The number of lines contained in this header section (terminated
by b)

Number of bands or parameters in the data structure

Number of along track lines of data within each scan cube at
resolution 1

Multiple of the smallest instrument IFOV
(for MODIS this is 250 meters* nres)

Number of bytes per data eIement

number of elements across track at resolution 1 for the Earth
view

unique ID within this data set for each

number of elements for the Solar Diffuser view

current SD mode: “DCrestore I Solar I Screen”

number of elements for the SpectroRadimetric Control Assembly

“radiometric I spectral I spatialAlongScan I spatialCrossScan”

number of black body viewing frames

the BB temperature (an array in the future)

UNIQUE TO:

dataset

dataset

dataset

dataset

dataset

dataset

scan cube

scan cube

scan cube

scan cube

scan cube

scan cube

scan cube

asynchronous

47

nSVframes number of space view elements scan cube

DATASET contents example

Hem is an abbreviated example output from the UNIX less program of a test scan cube dataset. Line
numbers have been added. Excess binary data has been deleted for illustration purposes and the dataset
contents are incomplete. The reader is encouraged to look into the contents of the datasets provided in the
distribution for mal life examples.

1- MODIS Scancubes AVHRR_albedo Version=l.0 headerLines=3

2- nbands=5, nlines=40, nres=4 nsize=2

3- This is a comment line

4- nframes=64 scancubeld=l
5. A@~A@~@~@~@A~@ATA@AvA@Av

6- AAATAAATAAATAAATAAATAAA~AATAAAT

7- nframes=64 scancubeld=2

8- A~m#[5mA~m#[5mAA[m&[5mA~m&[5mAA[mYO[5m%AA[m&[5mAA[mYO[5mAA[mYO[5mAA[m
9- AAA~AATAAATAAATAAATAAAwAWAAwAAAwAAU~AA~AAUAA~AAAUAAAU[m

10- nframes=64 scancubeld=3
11. A@ ATA@AwA@AwA@AwA@ AvA@AuA@AuA@AuA@ @AWA@AUA@AUA@Aw@AUA@AT[m

12- AAA~AA~AATAAATAAASAAwAA9AA~AA@AmTAAATAAATAAA~A~AA*AAS[m

13- nframes=64 scancubeld=4

14- A@ATA@ARA@ARA@AS@ AUA@AVA@AVA@AVAW@AVA@AVA@AVA@AVA@AWA@AW[m

15- AAAVAAPAApAAPAASAA9AA9AATAAATAAA~AA~AAPAWAATAAATAAAT[m

16- nframes=64 scancubeld=5
17. A@~A@AUA@ATA@ATA@ ATA@~A@Aw@ATA@ATA@ ATA@A~@A~@AVA@AV[m

18. AAA~AA~AA~AATAAATAAATAAASAATAAATAAATAAATAAA~AAPAA@AA~AAT[m

19-EOF

Figure 10. Dataset contents example.

48

The volume header consists of the f~st three lines. The key token “MODIS” is required to authenticate the
dataset as a MODIS format dataset. The token “Scancubes” indicates the spatial domain of the dataset
which the library uses to determine which of the “<paramet er>=<va lue>” tokens are required. The
next token “AVHRR_albedo” indicates the formal Data Product name and must agree with the
corresponding string in the” <product. h>” file for this Data Product. The “Version= 1.0” token
validates the library version with the dataset version. The “header Lines = 3” token informs the library

that three text lines, terminated by a new line character, define the volume header.

The fourth line contains the two required tokens for a scan cube domain dataset. The total number of pixels
for a resolution 1 spatial area for the highest resolution parameter, is given in “nframes=64“. This is
divided by the number of lines per scan cube “nl ines =40” at each spatial resolution to give the number
of across track elements (frames in the MODIS literature). The”s can cube I d= 1” tells the library the
unique scan cube identifier. This number is written by the library into the corresponding output data
product scan cube.

Lines 5 and 6 in the above example are the ASCII equivalents, in printable form, of each byte of binary
data. This has been shortened for illustration purposes. Multiple scan cubes are shown in lines 7-9, 10-12,
13-15, and 16-18. The binary data is not terminated by a new line as shown. The next scan cube header
begins directly after the binary data and can be anywhere on a displayed line. It is shown left justified for
illustration purposes.

The final line, 19 in this minimal example, contains the token “EOF”. This token is optional but does
indicate that the dataset has been terminated gracefully and not truncated abnormally.

Each header section can optionally contain the token “header Lines =<n>” . If it is not present, a value
of one (1) is assumed. If, however, this token is missing and there is more than one header line in the
datase~ then the data stream will be hopelessly out of sync since the ASCII data will be interpreted as part
of the binary science data. The library will eventually catch this mistake in a subsequent header read and
return an error code to the user, but not at the expected processing step.

49

Appendix F - Library Dataset Interactions

This appendix pments an overall view of the internal workings of the library. It is not a full library
documentation, but is meant to provide a feel for what is happening behind the scenes. The figure in this
appendix help the reader understand the relationship between the formal Data Product header include files
and the library’s use of information in both the data product header include files and the dataset contents.

The diagrams in Figure 11 and Figure 12 illustrate the relationship between the input and output data sets,
the utility library, and the user code. Data can be transferred, under user control, by the library from the
input scan cubes to the output scan cubes without passing through the memory space of the user code. The
first figure also illustrates the use of multiple input and output scan cubes within the library space and
managed by the library internal DCB structures that incorporate dynamic memory allocation and release.

Input Dataset

volume header

2
\

3

scan cube header

scan cube data

$

n times

trailer

Output Dataset

e
volume header u

-

scan cube header

scan cube data

4’
I

n times

trailer

right version of software?

right number of bands? E

right data resolution? K

i number of frames & ID

input data structure

/ ---- .- -1--- -. 1 i
w

output data structure

Figure 11. Data flow

Source_Header.h

source name

number of bands

number of lines

spatial resolution

Product_Header.h

4
product name

number of parameters

spatial resolution

number of lines

kirrpu ta

@rite User Code
\

\

w data
pointe

llustration.

3pointer to data

ar$ustedbyresolution
$factorforeach parameter
3

pointer to data

50

The second figure illustrates dataset access by surrounding the user’s code with the library functions.
Dataset contents are accessed via the data structures defined in the data product header include files. Note
that non-MODIS data is accessed via include files or other data structures that are not defined by this
library.

4
(c~:;k

words)l

(check
IDs)

(probagate
sizes)

MODIS data

\

product header
include file

MODIS data
product header
include file d

Science Algorithm

MODIS data Auxiliary
product header v data include
include file file R

F@ure 12.

\
Auxiliary Data

Es
reformatting rid/or
resampling

Auxiliary Dataset

Algorithm dataset interactions.

51

(This page intentionally left blank)

52

GLOSSARY

This section includes the definitions of selected key words used in this document.

aggregated

algorithm

ancillary

ANSI

A’IT

auxiliary

AVHRR

band

Black Body

BB View

c

Czcs

DAAC

Any of several methods for deriving a data value as a function of two or more input
values. This is used in the context of determining which value to place in a gridded bin in a
map projection. For example the result could be an average, maximum, minimum, or the
result of a weighting function.

A step-by-step problem solving procedure, especially an established, recursive
computational procedure for solving a problem in a finite number of steps. Used in this
document to represent a section of computer source code that performs this step.

Used in this document to mean data that has been transformed into the MODIS scan cube
data format.

American National Standards Institute. The governing body for published standards, one
of which is used to standardize programming language source code and specifications.

Algorithm Transfer Team. A group within the MODIS SDST that is chartered with
helping algorithm programmers with porting source code to the PGS environment.

Used in this document to mean external data that is not in the MODIS scan cube data
format.

Advanced Very High Resolution Radiometer. An instrument on a series of NOAA
satellites. See the “NOAA Polar Orbiter Data” by K. Kidwell, available from NOAA for
details.

A number used to represent a range of energy wavelengths from which a single detector
measures a radiance energy. This is the same as a data channel for AVHRR and several
other instruments but is not the same as a data channel for the MODIS instrument or other
instruments with variable spatial IFOV coverages.

A constant temperature emissive source within the MODIS instrument used to calibrate
the thermal bands.

The detector energy measurements when viewing the MODIS Black Body.

A computer programming language, successor to the A and B languages, the name of
which is consistent with the UNIX minimalist user command interface.

Coastal Zone Color Scanner. An ocean discipline satellite remote sensing instrument.

Distributed Active Archiving Center. The EOS component for formal Data Product
storage, production, and access.

53

Data Product

detector

DCB

Earth View

ECS

EOS

Frames
(MODIS
instrument)

FTN or
FORTRAN

geolocation

global

A formal name of a science (or instrument) value that is registered with the SPSO
database.

A piece of hardware in the MODIS instrument that measums radiant energy at one IFOV.

Data Control Block: a table that is used to maintain information about a dataset. This may
contain file names, sizes, pointers, links to associated datasets, and dataset descriptors.

MODIS instrument detector readouts during the portion of the scan in which the Earth is
in view.

EOS Core System. The ground processing and archiving, computer based segment of the
EOS

Earth Observing System. A suite of remote sensing satellites. A component of MTPE.

All the MODIS instmment data corresponding to a nominal 1 kilometer section of an
across track scan. (830 data channels)

Short for Formula Translator. A computer programming language.

The act of determining the location, on the Earth geoid, of MODIS instrument IFOVS.
This is performed for each spatial element (1 kilometer nominal footprint).

Of, relating to, or involving the entire earth; worldwide.

header (2 clefs) A section of the dataset containing information about the dataset (applied to both the

heritage

hierarchical

IFov

IMs

dataset volume and each scan cube). Also, a section of source code that specifies data
structures and descriptors that are common to more than one module. This library uses
library include ffles, operating system include files, generic data structure include files, and
Data Product specific header include files.

Something that is passed down from preceding generations; a tradition. In the MODIS
case, techniques and algorithms that were used in the past, before MODIS was invented.

Of or relating to a hierarchy, a series in which each element is graded or ranked. In
computer terms, elements of the hierarchy me wholly contained in (a subset ofj higher
elements.

Instantaneous Field Of View. Used informally to mean the instrument field of view. This is
the spatial area over which energy is measured by each instrument detector.

Information Management System. A component of the ECS that performs data product
selection based on metadata values.

54

Latitude

Level-O

Level-lA

Level-lB

Level-2

Level-3

Limb

Longitude

mapped

MAS

MCST

Metadata

MISR

MODIS

MTPE

The angular distance north or south of the earth’s equator, measured in degrees along a
meridian, as on a map or globe. The origin is at the Equator, increasing to 90 degrees at
the North pole.

A formal Data Product defined to be the MODIS instrument original data in packet form
with CCSDS (Consultative Committee on Space Data Systems) headers prepended.

A formal Data Product defined to be the MODIS instrument detector values as raw
counts. This includes the Earth View, Solar Diffuser, SRCA, Black Body, Space view, and
engineering /memory dump data. Level- 1A is fully reversible to the Level-O Data Product.

A formal Data Product defined to be the MODIS instrument at-satellite detector values as
radiance energy values received at the satdlite in the instrument spatial geometry. This is

not the at P ound r~ and therefore has no aQIIQ@C~C correction _r
. .

Formal science Data Products in the instrument spatial geometry.

Formal science Data Products in a globally mapped representation, corresponding to
geographic shapes and dimensions.

The circumferential edge of the apparent disk of a celestial body. Used in MODIS
terminology as the outermost detector measurements at the edges of the scan (maximum
scan angles).

Angular distance on the earth’s surface, measured in degrees east or west from the prime
meridian at Greenwich, England, to the meridian passing through a position. Positive to
the East, negative to the West and less than 180 degrees in magnitude.

A representation, usually on a plane surface, of a region of the earth or heavens. The ECS
will be using many types of maps produced via several gridding, binning, and aggregating
schemes.

MODIS Airborne Simulator. A 50 channel aircraft instrument with MODIS like bands.

MODIS Characterization Support Team. The MODIS entity responsible for the calibration
and characterization of the MODIS instrument.

Data about other data. E.g., a synopsis of a Data Product used for selection criteria.

An instrument on EOS with forward and backward looking scans used for st.tmo and
hi-directional reflectance Data Products.

Moderate Resolution Imaging Spectroradiometer.

Mission To Planet Earth. NASAS project that focuses attention of the Earth as opposed to
space or other planets.

55

multiplexed

nadir

nbands

nBBfrarnes

nEMbytes

nframes

nlines

npixels

mes

nSDfrarnes

nsize

nSRCAframes

Relating to, having, or consisting of multiple elements or parts. Relating to or being a
system of simultaneous communication of two or more messages on the same wire or
radio channel. A system in which data values are combined together, asynchronously.

A point on the celestial sphere directly below the observer, diametrically opposite the
zenith. The pierce point on the Earth of the MODIS instrument to center of Earth vector.

The integer number of distinct wavelength bands for Level-lA and Level- lB products.
Also used as the number of parameters in a Data Product.

The number of instrument frames that contain detector views of the black body

The number of equivalent instrument frames that contain memory dumps from the
instrument and formatter onboard computer memories. All engineering data, internal
tables, and op codes are contained in these data dumps.

The integer number of sampled MODIS instrument detector elements in the across track
(along scan) direction for the finest resolution bands or parameter. This is unique to each
Data Product, but would correspond to the number of pixels for the 250 meter bands for
the MODIS Level- 1A and Level- lB Data Products and would have a nominal value of
5416.

The integer number of lines of sampled MODIS instrument detector values in the along
track (across scan) di~ction for the finest resolution bands or parameter. This is unique to
each Data Product, but would correspond to the 40 pixels for the 250 meter bands for the
MODIS Level- 1A and Level- lB Data Products.

The integer total number of sampled MODIS instrument detector values in both the along
track (across scan) direction and the across track (along scan) direction for the finest
resolution bands or parameter. This is unique to each Data Product, but would correspond
to the 40 pixels times nfrarnes for the 250 meter bands for the MODIS Level-1A and
Level-lB Data Products.

The integer divisor applied to the nfames and nlines values for each band or parameter of
the formal Data Product. This can be considered as an array of dimension [nbands]. For
MODIS, this number = 1 for bands 1 and 2, = 2 for bands 3 to 7, and = 4 for the
remaining bands.

The number of instrument frames that contain detector views of the solar diffuser.

The number of bytes that a data element consumes. This is the total for all components of
the data element. For example, a Data Product consisting of a double, a long, and a byte
value would consume 13 bytes per pixel.

The number of instrument frames that contain detector views of the Spectral Radiometric
Calibrator Assembly.

56

nSVframes

OBC

parameter

PGs

pixel

prototype
(ANSI)

QA

quantization

radiance

raw counts

rectified

rectilinear

resarnpling

scan

SDPO

SDST

The number of instrument frames that contain detector views of deep space.

OnBoard Calibrators. The set on four calibration sources contained within the MODIS
instrument. See Solar Diffuser, SRCA, Black Body, and Space View.

Used in the MODIS context to define a component of a Data Product. Several parameters
constitute a formal Data Product. QA is included as a parameter to a Data Product.

Product Generation System. A component of the ECS that produces Data Products.

picture element. The smallest granule of a picture that can be represented by a unique
numerical value, usually on a video display.

A skeleton function call definition containing all the type declarations of its arguments, but
without the actual variable names.

Quality Assurance. The methods applied to MODIS Data Products for, and the resulting
indicators of determining the quality and validity of the Data Product.

To limit the possible values of [a magnitude or quantity] to a discrete set of values by
quantum mechanical rules. The process in which a continuous physical value is divided
into discrete values, thereby limiting the precision of the measurement.

The radiant energy emitted per unit time in a specified direction by a unit area of an
emitting surface.

An integer number representing the amount of energy measured at a detector. This is
sometimes called a digital number (DN) in other documentation.

To set right; correct. To correct by calculation or adjustment. Used in the MODIS sense
to mean a straightening of the scan geometry to orthogonal axes and uniform spatial
sampling.

Moving in, consisting of, bounded by, or characterized by a straight line or lines. The
effort of resampling pixels in the MODIS instrument geometry with the ‘bow tie’ effect into
a linearized and parallelized orbital coordinate system.

A process in which a value at a prespecified location (spatial or temporal) is derived from
the values of its surrounding values.

The data acquired during one half of the scan mirror rotation, consisting of multiple
instruments Frames, and assembled into a data structure called a scan cube. See the
MODIS Data Structure, Volumes, and Rates document for details.

Science Data Products Office.

MODIS Science Data Support Team. The GSFC based group responsible for the
production component of the MODIS ground processing system.

57

Solar Diffuser An onboard calibration white target, illuminated by the Sun. The MODIS detectors view
this target during a portion of the mirror scan rotation.

Space View MODIS instrument detector nadouts during the portion of the scan in which the deep
space is in view.

spatial Of, relating to, involving, or having the nature of space, telating to geometry as opposed
to time (temporal).

Spatial The nominal (at nadir) 1 kilometer area coveted by an ideal MODIS IFOV. Each element
Element contains all bands of data, irrespective of spatial resolution, that occur at each 1 kilometer

footprint. See the MODIS SRR, PDR, and CDR documents for exacting details.

SRCA Spectral Radiometric Calibrator Assembly.

swath The contiguous area viewed by a MODIS instrument scan segment. For example, the
portion of the MODIS mirror scan that views the Earth.

TBD To Be Determined

temporal Of, relating to, or limited by time: a temporal dimension; temporal and spatial boundaries.

TM Thematic Mapper. A satellite remote sensing instrument.

Team Members. Members of the MODIS Science Team.

token A string of characters separated by a delimiter, usually a blank character (or whitespace in
UNIX kHYTIS).

typedef (C) A “C” language facility that allows the programmer to define a new, possibly compound
data type. Examples of predefine data types are in~ long, short, floa~ and double.

UNIX The computer operating system selected by EOS as the standard platform.

58

REFERENCES

Unless otherwise noted, these documents are available from the MODARCH data archiving facility, code
920, Goddard Space Flight Center, Greenbelt, Maryland. his facility is available via the Internet.

1- “MODIS Level 1A Software Baseline Requirements”, SDST, Sept. 1, 1993, NASA TM 104594,
Vol 1.

2- “MODIS Data Rates, Volumes, & Processing Performance w/ Data Structures”, Thomas Goff,
May 13, 1994.

3- “MODIS Processing Spatial Domains”, Virginia Kalb and Thomas Goff.

4- “MODIS PGS Data Processing Operations Concepts,”, SDST, Sept. 13, 1993.

5- “Science Computing Facilities Plan”, Edward Masuoka, Sept. 7, 1993.

6- “Level 1A System Requirements Review (SRR)”, SDST, May 11, 1993.

7- “PGS Toolkit Users Guide for the ECS Project”, EOSDIS Core System Project, Feb. 4, 1994.

8- “MODIS Software Development Standards and Guidelines”, SDST, May 3, 1994 (draft).

9- “Geometric Correction of MODIS Data”, Virginia Kalb and Thomas Goff, Sept. 23, 1993.

10- “MODIS Level 1A Earth Location ATBD”, Robert Wolfe, July 25, 1994.

11- “MODIS Sensor Patterns and Multiresolution Pixel Registration”, Al Fleig, July 27, 1994.

12- “EOS Reference Handbook”, Earth Science Support Office, Document Resource Facility, 300 D
Street NW, Suite 860, Washington D.C. 20024.

13- “The Moderate Resolution Imaging Spectrometer-Nadir (MODIS-N) Facility Instrument”, Advances
in Space Research vol 11(3), 231-236, 1991, V.V. Salomonson and D.L.Toll.

59

(This page intentionally left blank)

INDEX

A

ancillarydata, 1
ANSI,6
ATT, 10
AVHRR,2

B

bow tie, 2

c
Czcs, 3

D

dataproductheader includefile, 4

F

FORTRAN,8

G

Geokation, 1

L

Landsat,2
Level-IA, 10
Level-lB, 7
Level-2,10

M

makefde, 8
mappeddomain, 1, 2
MAS,3
MISR,2
MOD_IO_aUocateOutputBuffer,13
MOD_lO_closeDatasets,13
MOD_IO_closeInputDataset,13
MOD_IO_closeOutputDataset,13
MOD_IO_openMasterInputDataset,12
MOD_IO_openOutputDataset,12
MOD_IO_printDataDescriptof,26
MOD_IO_prototypes.h,9
MOD_IO_readSwath,12
MOD_IO_writeSwath, 13
MSS, 3

61

N

nadir, 32
NOAA,4

P
PGs, 9
POSIX,8
pseudoaxle, 11

R
fagged array, 4

rectilinear domain, 1
resampling, 2

s
SBRC,10
scancubedomain,2
SDST,8
spatialregistration,9

T
TLCF, 17
TM, 3
typedef,9

u
UNIX, 17

v
vegetation index, 7
VI, 7

62

REPORT DOCUMENTATION PAGE
Form Approved

OMB NO. 0704-0188

Public reporting burden forthis collection ofinformation isestimated toaveragel hour perresponse, including thetime forreviewing instructions, searching existing data so"rces,
gathering andmaintaining thedata needed, andcompleting andreviewing thecollection of information. Send comments regarding thiaburden estimate oranyother aspect of this
collection of information, including suggestions forreducing this burden, to Washington Headquarters Servicea, Directorate forlnformation Operations and Reports, 1215 Jefferson
Davis Highway, Suite 1204, Arlington, VA22202-4302, andtotha Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY (Leave b/ank) 3. REPORT TYPE AND DATES COVERED

Technical Memorandum
4.TITLE AND SUBTITLE 5. FUNDING NUMBERS

MODIS Technical Report Series
Volume 4, MODIS Data Access User’s Guide - Scan Cube Format

Code 920
6. AUTHOR(S) C-NAS5-31331

Virginia L. Kalb and Thomas E. Goff

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS (ES) 8. PEFORMING ORGANIZATION
REPORT NUMBER

Goddard Space Flight Center 95 BOO013
Greenbelt, Maryland 20771

9. SPONSORING/ MONITORING ADGENCY NAME(S) AND ADDRESS (ES) 10. SPONSORING / MONITORING
ADGENCY REPORT NUMBER

National Aeronautics and Space Administration NASA TM- 104594, Vol. 4
Washington, DC 20546-0001

11. SUPPLEMENTARY NOTES

Kalb: Goddard Space Flight Center, Greenbelt, Maryland;
Goff Research and Data Systems Corporation, Greenbelt, Maryland

12a. DISTRIBUTION / AVAILABILITY STATMENT

Unclassified - Unlimited
12b. DISTRIBUTION CODE

Subject Category 61
This publication is available from theNASA Center for AeroSpace
Information, 800 Elkridge Landing Road, Linthicum Heights, MD
21090-2934. (301)62 1-0390.

13. ABSTRACT (Maximum 200 words)

The software described in this document provides I/O functions to be used with Moderate Resolution
Spectroradiometer (MODIS) level 1 and 2 data, and could be easily extended to other data sources. This
data is in a scan cube data format: a 3-dimensional ragged array containing multiple bands which have
resolutions ranging from 250 to 1000 meters. The complexity of the data structure is handled internally
by the library. The I/O calls allow the user to access any pixel in any band through “C” structure syntax.
The high MODIS data volume (approaching half a terabyte per day) has been a driving factor in the library
design. To avoid recopying data for user access, all I/O is performed through dynamic “C” pointer
manipulation. This manual contains background material on MODIS, several coding examples of library
usage, in-depth discussions of each function, reference “man” type pages, and several appendices with
details of the include files used to customize a user’s data product for use with the library.

14. SUBJECT TERMS 15. NUMBER OF PAGES
72

MODIS; Scan Tube 16. PRICE CODE

17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION
OF REPORT OF THIS PAGE

20. LIMITATION OF ABSTRACT
OF ABSTRACT

Unclassified Unclassified Unclassified
UL

SN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)

